
ABSTRACT

SYGRAPH: ACCELERATING HETEROGENEOUS GRAPH
ANALYTICS APPLICATIONS

1. Wang, Yangzihao, et al. "Gunrock: A high-performance graph processing library on the GPU." Proceedings of the 21st ACM SIGPLAN symposium on principles and practice of parallel programming. 2016.

2. Nodehi Sabet, Amir Hossein, Junqiao Qiu, and Zhijia Zhao. "Tigr: Transforming irregular graphs for gpu-friendly graph processing." ACM SIGPLAN Notices 53.2 (2018): 622-636.

3. Wang, Hao, et al. "SEP-graph: finding shortest execution paths for graph processing under a hybrid framework on GPU." Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming. 2019.

Antonio De Caro, Biagio Cosenza
Department of Computer Science, University of Salerno, Italy

{antdecaro, bcosenza}@unisa.it

Graph analytics play a crucial role in a wide range of fields, including social network analysis, bioinformatics, and scientific computing, due to their ability to model and explore
complex relationships. However, optimizing graph algorithms is inherently difficult due to their memory-bound constraints, often resulting in poor performance on modern
massively parallel hardware. In addition, most state-of-the-art implementations are designed for NVIDIA GPUs, limiting their applicability on supercomputers equipped with
AMD and Intel GPUs, for example. To address these challenges, we propose SYgraph, a portable heterogeneous graph analytics framework written in SYCL. SYgraph provides
an efficient two-layer bitmap data layout optimized for GPU memory, eliminates the need for pre- or post-processing steps, and abstracts the complexity of working with
diverse target platforms. Experimental results demonstrate that SYgraph delivers competitive performance on NVIDIA GPUs while being able to target any SYCL-supported
device, such as AMD and Intel GPUs.

SYGRAPH OVERVIEW
SYgraph offers a user-friendly API for defining and executing graph algorithms,
making graph analytics accessible on GPU without requiring deep hardware

expertise. The API abstracts the concept of Frontier [1]—the set of active
elements in a graph computation—providing four core operators to efficiently
manage and manipulate these data structures.

• the Application Layer provides a
straightforward API that enables
graph analytics without requiring

deep hardware knowledge;

• the SYgraph Core manages load-

balancing on essential primitives
such as advance, compute, and filter
to operate on active graph frontiers;

• and the SYCL Layer that enables
portability.

SYGRAPH API
The SYgraph API simplifies graph algorithm development with three core methods
for managing frontiers:

• Advance discovers new vertices based on a lambda condition;

• Filter removes vertices that meet a specified condition;

• Compute executes operations on active vertices defined by a lambda.
These methods abstract complexity, allowing efficient implementation of graph
algorithms. Below an implementation of BFS and SSSP algorithms using SYgraph.

In purple are highlighted the SYgraph’s core functionalities, while the highlighted lines are offloaded on the GPU and
executed by each work-item.

IMPLEMENTATION

RESULTS

Graph& G = readGraph();
size_t distances = sycl::malloc_device(...)
auto in_frontier = makeFrontier<frontier_view_t::vertex>(G);
auto out_frontier = makeFrontier<frontier_view_t::vertex>(G);

size_t iter = 0;

while (!in_frontier.empty()) {
 operators::advance::frontier(G, in_frontier, out_frontier,
 [=](vertex_t u, vertex_t v, edge_t edge, weight_t weight) {
 bool unvisited = (iter + 1) < distances[v];
 return unvisited;
 }).wait();

 operators::compute(G, out_frontier,
 [=](vertex_t v) {
 distances[v] = iter + 1;
 }).wait();

 frontier::swap(in_frontier, out_frontier);
 out_frontier.clear();
 iter++;
}

BFS

/* Init Data Here */
size_t iter = 0;
while (!in_frontier.empty()) {

 operators::advance::frontier(G, in_frontier, out_frontier,
 [=](vertex_t u, vertex_t v, edge_t edge, weight_t weight) {
 weight_t u_dst = sync::load(&distances[u]);
 weight_t v_dst = u_dst + weight;
 weight_t recover_dst = sync::load(&distances[v]);
 recover_dst = sync::min_cas(&(distances[v]),
 &(v_dst));
 return (v_dst < recover_dst);
 }).wait();

 operators::filter::external(G, out_frontier, in_frontier,
 [=](vertex_t v) {
 if (visited[v] == iter) return false;
 visited[v] = iter;
 return true;
 }).wait();
 out_frontier.clear();
 iter++;
}

SSSP

SYgraph maps graph algorithms to GPUs using SYCL queues, with graphs stored in
CSR format in global memory. Three core primitives—advance, filter, and compute
—are implemented with parallel for loops:
• Filter and Compute: Assign active vertices to individual work-items.
• Advance: Uses a load-balancing strategy to prevent imbalance from varying

vertex degrees.

TWO-LAYER BITMAP FRONTIER

0

1
3

2
5

4
Active Node Inactive Node

For representation purposes we consider 4-bit integers

SYgraph uses a two-layer bitmap layout to efficiently represent active graph
vertices and reduce memory overhead:

• First Layer marks active vertices;

• Second Layer identifies integers with active bits.
This structure eliminates the need for post-processing after advance operations
to remove redundant vertices while enhancing memory compression.

0 1 2 3 4 5 6 7

1 1 0 1 0 0 0 0

0 1 2 3

1 0 0 0

1th Integer 2nd Integer

Second Layer

First Layer

1 0 … 1

0 1 … 31
SGXY

Threads

1

2.1

…

2

v0 v1 v31
…v0 v31

2.31

Compact

Cooperatively
Process

Bitmap

0 1 … 31

…v0 v31

0 1 … 31

…v0 v31

WG0 WG1 WG2 WG3

SG00 SG01 SG10 SG11 SG20 SG21 SG30 SG31

32bit 32bit 32bit 32bit32bit 32bit 32bit 32bit

WG1

SG00 SG01 SG02 SG03 SG10 SG11 SG12 SG13

32bit 32bit 32bit 32bit

WG0

32bit 32bit 32bit 32bit

In the advance operation, workgroups are dynamically
assigned bitmap integers based on the compute unit’s
capacity. Active vertices are compacted into local memory
using a scan operation.
Subgroups then collaboratively process slices of the
compacted vertices, handling one vertex’s neighborhood at
a time in a coalesced manner for optimal parallelism.

0
1
…
31

u1
. . .
u31
u32
u33

u63

u0

. . .

ThreadsNeighbors

1 1 0 1 0 0 0 0

1th Integer 2nd Integer+ +

frontier.empty()

Reduction

frontier.clear()

memset(0)

0 0 0 0 0 0 0 0

We tested SYgraph on Breadth First Search (BFS) and Single Source Shortest Path
(SSSP) against Gunrock [1], Tigr [2], and SEP-Graph [3] on a NVIDIA V100S. Then
we evaluated SYgraph on multiple target architectures. All the tests were
conducted by using oneAPI 2024.2.0.

SYgraph outperforms Gunrock by a factor of 3,28Ｘ, Tigr by 8,4Ｘ and SEP-Graph
by 2,53Ｘ.

…

1 1 0 1 0 0 0 0

memset(0)

Graph Application

SYCL

SYgraph
I/OGraph

OpenCLLevelZeroROCmCUDA

API

Core

Primitives Frontier

Backend

