SYGRAPH: ACCELERATING HETEROGENEOUS GRAPH
ANALYTICS APPLICATIONS

Antonio De Caro, Biagio Cosenza
Department of Computer Science, University of Salerno, Italy

{antdecaro, bcosenza}@unisa.it

ABSTRACT

Graph analytics play a crucial role in a wide range of fields, including social network analysis, bioinformatics, and scientific computing, due to their ability to model and explore
complex relationships. However, optimizing graph algorithms is inherently difficult due to their memory-bound constraints, often resulting in poor performance on modern
massively parallel hardware. In addition, most state-of-the-art implementations are designed for NVIDIA GPUs, limiting their applicability on supercomputers equipped with
AMD and Intel GPUs, for example. To address these challenges, we propose SYgraph, a portable heterogeneous graph analytics framework written in SYCL. SYgraph provides
an efficient two-layer bitmap data layout optimized for GPU memory, eliminates the need for pre- or post-processing steps, and abstracts the complexity of working with
diverse target platforms. Experimental results demonstrate that SYgraph delivers competitive performance on NVIDIA GPUs while being able to target any SYCL-supported
device, such as AMD and Intel GPUs.

SYGRAPH OVERVIEW

SYgraph offers a user-friendly API for defining and executing graph algorithms,
making graph analytics accessible on GPU without requiring deep hardware
expertise. The API| abstracts the concept of Frontier [1]—the set of active
elements in a graph computation—providing four core operators to efficiently
manage and manipulate these data structures.

e the Application Layer provides a
straightforward API that enables
v graph analytics without requiring

AP [Primitives | (Frontier | araph | wo | deep hardware knowledge;

[Graph Application]

core | SYgraph) e the SYgraph Core manages load-
Backend balancing on essential primitives
[SYCL) such as advance, compute, and filter

\ 4 \ 4 \ 4 \ 4 to operate on active graph frontiers;
(CUDA] ((ROCm | (Leveizero] (OpenCL]| o and the SYCL Layer that enables

portability.

SYGRAPH API

The SYgraph API simplifies graph algorithm development with three core methods
for managing frontiers:

e Advance discovers new vertices based on a lambda condition;

e Filter removes vertices that meet a specified condition;

e Compute executes operations on active vertices defined by a lambda.

These methods abstract complexity, allowing efficient implementation of graph
algorithms. Below an implementation of BFS and SSSP algorithms using SYgraph.

BFS SSSP

Graph& G = readGraph();

size_t distances = sycl::malloc_device(...)

auto in_frontier = makeFrontier<frontier_view_t::vertex>(G);
auto out_frontier = makeFrontier<frontier_ view t::vertex>(G);

size_t iter = 0;
while ('in_frontier.empty()) {

operators: :advance::frontier(G, in_frontier, out_frontier,
[=] (vertex_t u, vertex_t v, edge_t edge, weight_t weight) {
weight_t u_dst = sync::load(&distances[ul);
weight_t v_dst = u_dst + weight;
operators::advance::frontier(G, in_frontier, out_frontier, weight_t recover_dst = sync::load(&distances[v]);
[=] (vertex_t u, vertex_t v, edge_t edge, weight_t weight) { recover_dst = sync::min_cas(&(distances[v]),
bool unvisited = (iter + 1) < distances|[v]; &(v_dst));
return unvisited; return (v_dst < recover_dst);
}).wait(); }).wait();

size t iter = 0;

while (!in_frontier.empty()) {

operators::compute(G, out_frontier,
[=] (vertex_t v) {

operators::filter::external(G, out_frontier, in_frontier,
[=] (vertex_t v) {

distances|[v] = iter + 1; if (visited[v] == iter) return false;
}).wait(); visited[v] = iter;
return true;
frontier::swap(in_frontier, out_frontier) }).wait();
out_frontier.clear(); out_frontier.clear();
iter++; iter++;
} }

TWO-LAYER BITMAP FRONTIER

SYgraph uses a two-layer bitmap layout to efficiently represent active graph
vertices and reduce memory overhead:

e First Layer marks active vertices;

e Second Layer identifies integers with active bits.

This structure eliminates the need for post-processing after advance operations
to remove redundant vertices while enhancing memory compression.

@ Active Node

Inactive Node

0 1 2 3 Second Layer
1 0
l I

. 1th Integer . ’ 2nd Integer
0 1 2 3 4 5 6 7
1 1 0 1 0 0

First Layer

IMPLEMENTATION

SYgraph maps graph algorithms to GPUs using SYCL queues, with graphs stored in

CSR format in global memory. Three core primitives—advance, filter, and compute

—are implemented with parallel for loops:

* Filter and Compute: Assign active vertices to individual work-items.

e Advance: Uses a load-balancing strategy to prevent imbalance from varying
vertex degrees.

| 320ir :32bir |326ir {326t | 326ir | 32bit | 32bir | 32bit 0 1 ... 31 Threads
LTJ LTJ LTJ I—] LTJ LTJ LTJ J' J' “' S(;XY
SGyy SGy, SGyySGy; SGyy SGy, SGsy SGi Vo Vi i @
N/ N/ N/ \/ 1 0 .. 1] 5m=? [0 V31
WG, WG, WG, WG, Bitman
|320ir 32bir [326ir {326t | 326ir 32bit | 32bit | 32bit - 3,1 (,) ... 91
TT T TTTTT (L T
SGyy SGy; SGy, SGoz SGig SGy; SGy, SGis 0l | Cooperatively 0 il
\\ // \\ // Process
WG, WG,
Neighbors Threads
In the advance operation, workgroups are dynamically i |- 0
assigned bitmap integers based on the compute unit’s iy |- 1
capacity. Active vertices are compacted into local memory
using a scan operation. Z; T
Subgroups then collaboratively process slices of the gy |—
compacted vertices, handling one vertex’s neighborhood at
a time in a coalesced manner for optimal parallelism. Ho3 |+

frontier.empty() frontier.clear()

1 1 0) 1 0 0 0 0
1 1 0) 1 0 0 0 0

2nd Integer +

] memset(0Q) memset(0Q)
1th Integer + . \ . \ .

0 0 0 0 0 0 0 0

Reduction

RESULTS

We tested SYgraph on Breadth First Search (BFS) and Single Source Shortest Path
(SSSP) against Gunrock [1], Tigr [2], and SEP-Graph [3] on a NVIDIA V100S. Then

we evaluated SYgraph on multiple target architectures. All the tests were
conducted by using oneAPI 2024.2.0.

HEl SYgraph Bl Gunrock Bl Tigr SEP Preprocessing
: algorithm = BFS _algorithm = SSSP
7 . |
E10°3 I
b X
£
= 2
C 10 3 - xz
O - I
"5' —
3 10" -
10 3
L
CA USA hollyw indo journal kron CA USA hollyw indo journal kron
E MAX 1100 LevelZero MAX 1100 OpenCL MI100 ROCm I V100S CUDA
algorithm = BFS algorithm = SSSP

3 10° 3 10°
\5/10 £ 10
o o)
£ £
~ 2 Z 2
5 10 5 10
5 5
&) O
D Q
3 >
o s

10 10

CA USA hollyw indo journal kron CA USA hollyw indo journal kron

SYgraph outperforms Gunrock by a factor of 3,28 X, Tigr by 8,4 X and SEP-Graph
by 2,53 X.

1. Wang, Yangzihao, et al. "Gunrock: A high-performance graph processing library on the GPU." Proceedings of the 21st ACM SIGPLAN symposium on principles and practice of parallel programming. 2016.
2. Nodehi Sabet, Amir Hossein, Jungiao Qiu, and Zhijia Zhao. "Tigr: Transforming irregular graphs for gpu-friendly graph processing." ACM SIGPLAN Notices 53.2 (2018): 622-636.
3. Wang, Hao, et al. "SEP-graph: finding shortest execution paths for graph processing under a hybrid framework on GPU." Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming. 2019.

