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Abstract—Understanding community formation is a funda-
mental task in network science, as it reveals the structural
organization of complex networks and provides insights into the
functional roles and interactions of their nodes. Recently, hy-
pergraphs have emerged as a powerful framework for modeling
high-order relationships in real-world systems, capturing multi-
entity relations beyond traditional pairwise connections. However,
efficiently processing hypergraphs on GPUs remains challenging
due to their inherent sparsity and structural irregularity, leading
to poor memory locality and load imbalance. Given that the
world’s most powerful supercomputers are equipped with GPUs
from different vendors, such as AMD, Intel, and NVIDIA,
a portable performance solution is essential to exploit these
systems effectively without rewriting the entire codebase for each
platform. In this work, we pursue this objective by evaluat-
ing three portable programming models, OpenMP, SYCL, and
Kokkos, applied to the label propagation community detection
algorithm for hypergraphs, examining their programmability and
performance on heterogeneous GPU architectures.

Index Terms—Label Propagation, Hypergraphs, Portable Pro-
gramming Models, GPU

I. INTRODUCTION

Community detection is the process of identifying groups
of nodes in a network that are more densely connected to
each other than to the rest of the network. Mining these
local network structures can reveal the organizational prin-
ciples and operational functions of a variety of real-world
systems, ranging from news spreading to protein identification
with similar biological functions to collaboration patterns [1].
Traditionally, complex systems have been successfully stud-
ied through graphs abstracting the underlying relations with
nodes and edges connecting pairs of interacting components.
However, many real-world dynamics are inherently high-
order and cannot be described simply in terms of pairs [2].
Recently, hypergraphs have emerged as a powerful framework
for naturally modeling such many-to-many relations [3].

A hypergraph is a generalization of a graph, where a (hy-
per)edge can connect an arbitrary number of nodes [4]. Such
structures can easily abstract social systems where individuals
interact in groups of any size (e.g., co-authorship collabora-
tion network) as well as high-order relations in biological,
ecological, and neuroscience systems [2]. Despite their pow-

erful expressiveness, hypergraphs introduce significant com-
putational and algorithmic challenges. Like graphs, handling
hypergraphs on GPUs is particularly complicated due to their
sparse and irregular structure [5]. Traditional representations
such as incidence lists or incidence matrices are poorly suited
to GPUs, as they require indirect and irregular memory ac-
cesses that are difficult to organize into contiguous, coalesced
memory accesses. As a result, hypergraph workloads often
exhibit uncoalesced memory access patterns and severe branch
divergence, hindering GPU utilization and leading to uneven
thread workload distribution. Designing efficient data layouts
and parallel execution strategies is therefore non-trivial, espe-
cially when targeting diverse GPU architectures. Moreover, the
increasing heterogeneity of systems in TOP500 [6]—featuring
NVIDIA, AMD, and Intel accelerators—has further motivated
the adoption of portable programming models such as SYCL,
OpenMP target offload, and Kokkos to ensure performance
between vendors while avoiding lock-in.

This work presents and evaluates three portable GPU
implementations of the Label Propagation (LP) community
detection algorithm designed for hypergraphs [7] using SYCL,
OpenMP target offload, and Kokkos. Our analysis provides a
comprehensive comparison of their programmability, perfor-
mance, and performance portability across AMD, Intel, and
NVIDIA GPUs, under a common optimization scenario. This
study highlights the trade-offs among these models in handling
irregular, memory-bound workloads and identifies key factors
influencing their efficiency on heterogeneous architectures.
The contributions of our work can be summarized as follows:

• we provide the first implementation of the Label Prop-
agation algorithm for hypergraphs on GPUs using three
portable programming models—SYCL, OpenMP target
offload, and Kokkos;

• we introduce a uniform set of GPU optimizations, includ-
ing coalesced hypergraph topology access, degree-aware
phase decomposition, and shared-memory reuse, applied
across all programming models;

• we offer a benchmark on AMD, Intel, and NVIDIA
GPUs, collecting key hardware-level metrics and analyz-



ing performance portability and productivity differences
among SYCL, OpenMP, and Kokkos.

II. BACKGROUND

A. Community Detection on Hypergraphs and the Label Prop-
agation Algorithm

Let H = (V,E) be a hypergraph where V is a finite
set of vertices, and E is a set of non-empty subsets of V ,
called hyperedges. A community C in a hypergraph H is
a subhypergraph H ′ whose vertices are densely connected
within H ′ but sparsely connected to vertices in H \H ′. The
task of identifying communities in hypergraphs generalizes the
corresponding problem in graphs by incorporating the higher-
order information encoded in hyperedges. Further, hyperedges
themselves can also be assigned to communities. Formally,
community detection aims to define a mapping function F
that assigns each vertex v ∈ V to at least one community
C1, . . . , Ck, where k denotes the total number of communities
discovered.

In this work, we focus on the Label Propagation community
detection algorithm, which is widely recognized as efficient,
scalable, and formally well defined [8]. Specifically, we con-
sider the algorithm for hypergraphs proposed by Antelmi et
al. [7], which generalizes the original algorithm introduced by
Raghavan et al. [9] for graphs. The algorithm alternates be-
tween hyperedge and vertex update phases, allowing labels to
propagate through higher-order connections in the hypergraph.
During each iteration, information is exchanged between inci-
dent vertices and hyperedges until a stable labeling is reached.
A GPU-oriented formulation of this two-phase propagation
scheme, emphasizing its data movement and memory access
characteristics, is described in Section III.

B. Portable Programming Models

The increasing presence of heterogeneous GPU-based archi-
tectures in modern supercomputers—featuring devices from
NVIDIA, AMD, and Intel—has made performance portability
a primary concern for scientific computing. Developers aim
to balance programmability, fine-grained control, and efficient
execution without maintaining multiple vendor-specific code-
bases. To address this challenge, several portable programming
models have emerged, offering abstractions that enable appli-
cations to target multiple GPUs with a single implementation.
Despite syntactic differences, these models share common
concepts: computations are expressed as kernels executed by
lightweight threads organized into hierarchical groups (e.g.,
thread blocks or teams), and memory hierarchies include fast
on-chip shared memory to accelerate data reuse.

SYCL [10] is a Khronos Group standard for single-source
C++ programming on heterogeneous systems. It defines ker-
nels launched on device queues, where work-items (threads)
form work-groups (thread blocks) and hardware subgroups
(warps or wavefronts) to exploit fine-grained SIMD-style
parallelism. SYCL offers both a buffer–accessor model for
dependency tracking and Unified Shared Memory (USM) for
explicit pointer control, supporting local memory for efficient

data reuse across backends such as Level Zero, CUDA, and
HIP.

OpenMP target offload [11] extends its directive-based
model to GPUs via constructs such as #pragma omp
target teams distribute parallel for. It en-
ables incremental porting of CPU code by annotating loops
and automates data transfers via map clauses. Parallelism is
organized into hierarchical teams and threads, with optional
shared memory and reductions introduced in recent versions,
though explicit control over subgroup execution remains lim-
ited.

Kokkos [12] provides a hierarchical C++ abstraction that
mirrors GPU execution through teams, vector lanes, and
threads. Its TeamPolicy maps these levels to hardware-
specific units (warps, wavefronts, subgroups) and supports
team’s scratch memory for on-chip data reuse. Kokkos targets
multiple execution spaces (CUDA, HIP, SYCL, OpenMP),
enabling portable yet fine-grained optimizations across archi-
tectures.

III. ALGORITHM DESCRIPTION

Given the heterogeneity of the programming models dis-
cussed, we introduce a unified abstraction that captures the
fundamental GPU programming concepts underlying each
model (see Algorithm 1), while remaining independent of their
specific implementation.

At each iteration, the labels are propagated alternately
between the vertices and hyperedges until convergence or
until a maximum number of iterations is reached. The process
begins with an edge phase (line 7), where all hyperedges are
processed in parallel. Each thread or thread block handles
a single hyperedge and computes the most frequent label
among its incident vertices (lines 9–12). To effectively identify
the majority label, each thread reserves a small histogram in
shared memory (line 8) used to count the label occurrences.
The resulting dominant label is then assigned to the corre-
sponding hyperedge (line 14).

Once the hyperedge labels are updated, the algorithm pro-
ceeds with the vertex phase (line 16), which is also executed
in parallel across all vertices. Each thread processes one vertex
and examines the labels of the hyperedges to which it belongs
(lines 18–20). As in the previous phase, a shared-memory
histogram (line 17) is employed to identify the most frequent
label among the neighboring hyperedges. If the new label
differs from the vertex’s previous assignment, the vertex label
is updated (line 23), and a convergence flag is set to indicate
that further iterations are required.

The alternation between these two phases continues until
the relative proportion of changed vertex labels falls below
the tolerance threshold t or the maximum iteration count
is reached (lines 28–30). The parameter t thus acts as a
convergence criterion, ensuring that the algorithm halts when
further updates become negligible, thereby avoiding unneces-
sary iterations.

In this formulation, outer-level parallelism is achieved
across vertices and hyperedges, while the loops over their local
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Algorithm 1: Hypergraph Label Propagation (HLP) —
GPU abstraction

Result: List of hyperedges and vertex labels
Input: H = (V,E), VL, L, MaxIterations, t tolerance

threshold
1 vlabels← map{Int, Int};
2 helabels← map{Int, Int};
3 changes← 0; iter ← 0;
4 stop← false;
5 while ¬stop and iter < MaxIterations do
6 stop← true;
7 for e ∈ E do in parallel
8 shared hist[|L|]← 0;
9 for u ∈ e do

10 if vlabels[u] defined then
11 increment hist[vlabels[u]]
12 end
13 end
14 helabels[e]← argmaxc hist[c];
15 end
16 for v ∈ V do in parallel
17 shared hist[|L|]← 0;
18 for e ∋ v do
19 increment hist[helabels[e]]
20 end
21 label← argmaxc hist[c];
22 if label ̸= vlabels[v] then
23 vlabels[v]← label;
24 atomicAdd(changes, 1);
25 stop← false;
26 end
27 end
28 if changes/|V | < t then
29 stop← true;
30 end
31 changes← 0;
32 iter ← iter + 1;
33 end
34 return vlabels

incident elements are executed sequentially within each thread.
The use of shared memory minimizes global memory traffic
and accelerates the computation of label frequencies, while
atomic operations ensure consistent updates during concurrent
access to the changes variable (line 24). The final output
consists of stable vertex and hyperedge label assignments
representing the propagated community structure within the
hypergraph.

Details concerning each programming model implementa-
tion are highlighted in the next sections.
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Fig. 1. CSR+CSC Layout.

IV. OPTIMIZATIONS OVERVIEW

A. Hypergraph Representation

To optimize memory usage, we adopt a hybrid CSR+CSC
layout [13] as shown in Figure 1. The Compressed Sparse
Row (CSR) format is used to store, for each node v, the list
of incident hyperedges. In contrast, the Compressed Sparse
Column (CSC) is used to record, for each hyperedge, the
set of nodes it contains. This dual representation supports
both vertex-to-hyperedge and hyperedge-to-vertex traversals
and ensures coalesced memory access to contiguous elements
within each incidence list, improving memory efficiency and
GPU throughput.

Such bidirectional access is essential for the two-phase
structure of the Algorithm 1. During the edge phase, each
hyperedge iterates over its incident vertices to aggregate their
current labels, which requires fast access from hyperedges to
nodes. In contrast, in the vertex phase, each vertex updates
its label based on the labels of its incident hyperedges,
demanding traversal in the opposite direction. By explicitly
storing both mappings in CSR (node-to-hyperedge) and CSC
(hyperedge-to-node) formats, we avoid expensive on-the-fly
transpositions and enable efficient GPU-parallel executions
across both phases.

B. Phase Decomposition and Hierarchical Parallelism

Both the edge phase and the vertex phase of Algorithm 1
operate on hyperedges and vertices with highly irregular
incidence sizes. Some hyperedges may contain hundreds or
thousands of nodes, while others consist of only a few;
similarly, certain vertices participate in many hyperedges,
whereas others appear in very few. Executing all elements
using a single, uniform parallel strategy leads to severe load
imbalance and high thread divergence on GPU architectures.

To overcome this, we first perform a preprocessing step in
which we compute degree-based groups for both hyperedges
and vertices. Elements are bucketed according to the number
of incident nodes (for hyperedges) or incident hyperedges (for
vertices), as shown in Figure 2. We then decompose both the
edge phase and the vertex phase into three execution steps,
where each step processes a different group. Each step is
implemented as a separate GPU kernel, allowing the execution
configuration to be tailored to the size of each group.
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Fig. 2. Phase Decomposition example.

Groups are assigned to different levels of the GPU’s hierar-
chical execution model (in SYCL terminology): large-degree
elements are processed by an entire work-group, medium-
degree elements are handled at the sub-group level, and small-
degree elements are executed by individual work-items. When
processing at the work-group or sub-group level, work-items
operate cooperatively over contiguous segments of the CSR
and CSC, enabling coalesced global memory accesses.

By aligning computational effort with degree-based group-
ing and mapping it to appropriate levels of parallelism, we
achieve better load balancing, increase hardware occupancy,
reduce synchronization overhead, and minimize thread diver-
gence during both phases of the algorithm. However, not all
programming models expose the same degree of hierarchical
parallelism or provide equivalent control over work-groups,
sub-groups, and individual work-items.

C. Local (Shared) Memory Usage

To further improve performance, we exploit local (shared)
memory to reduce the number of global memory accesses
during the label aggregation steps of both phases. Since each
group in our three-step execution strategy exhibits different
levels of parallel cooperation, we adapt the use of local
memory accordingly. In the first step, where large-degree
elements are processed by an entire work-group, threads col-
laboratively update a single shared-memory buffer that stores
the intermediate label histogram, which is then reduced to
determine the dominant label. In the second step, medium-
degree elements are assigned to sub-groups; in this case, the
local memory allocation is larger, as a distinct histogram
buffer must be reserved for each sub-group within the work-
group to allow independent reductions to proceed without
interference. Finally, in the third step, where small-degree
elements are processed by individual work-items, each thread
is given an exclusive portion of local memory to maintain

its own label counts and directly retrieve the maximum label
without requiring any synchronization.

V. IMPLEMENTATION ON DIFFERENT PROGRAMMING
MODELS

This section describes the approach adopted to implement
the Algorithm 1 across the programming models and how each
programming model implements the optimizations described
in Section IV.

A. SYCL

The SYCL implementation uses Unified Shared Memory
(USM) to allocate device memory explicitly. The dual CSR
and CSC arrays describing the hypergraph are flattened on the
host and copied into device-accessible USM allocations.

Each iteration of the algorithm launches the two phases
(edge and vertex) and further decomposes them into three
degree-based buckets. Each bucket is executed through an
independent kernel submission to a SYCL out-of-order queue.
This configuration is crucial for performance, as it allows
kernels in the same phase to execute concurrently, improving
GPU utilization and overlapping computation across buckets,
since each edge is independent of the others.

Large-degree elements are assigned to entire work-groups,
medium-degree to sub-groups, and small-degree to individual
work-items using nd_range configurations. Within each
kernel, threads cooperatively accumulate label occurrences
in shared memory through a sycl::local_accessor.
For the sub-group case, the accessor is partitioned to avoid
conflicts between sub-groups, and partial results are combined
using subgroup collectives. Updates to the global label arrays
rely on sycl::atomic_ref to ensure correctness under
concurrent writes.

Convergence detection is performed at the end of the
vertex phase using a sycl::reduction over all threads
to accumulate the number of label changes across vertices.
The resulting scalar value is transferred back to the host to
determine whether an additional iteration is required.

B. OpenMP Target Offload

The OpenMP implementation adopts a directive-based ap-
proach, using #pragma omp target constructs to offload
computation to the GPU. The CSR and CSC arrays are trans-
ferred through map(tofrom:) clauses, avoiding explicit
memory-management calls and keeping the host and device
data consistent across iterations. Each propagation phase (edge
and vertex) is executed as a target teams distribute
parallel for construct, where teams correspond to GPU
thread blocks and threads to individual device lanes.

Unlike SYCL and Kokkos, OpenMP currently does not
expose explicit sub-group or SIMD-level parallelism on GPUs.
Consequently, medium-degree elements, which could other-
wise benefit from warp- or wavefront-level cooperation, are
processed at the thread level. For this reason, each phase is
decomposed into two kernel launches, corresponding to the
large- and small-degree buckets, respectively.
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TABLE I
SET OF REAL-WORLD DATASETS USED FOR EXPERIMENTS. |V | DENOTES
THE NUMBER OF NODES, |E| THE NUMBER OF HYPEREDGES, |E∗| THE

NUMBER OF UNIQUE HYPEREDGES, AND smax THE MAXIMUM
HYPEREDGE SIZE.

Name |V | |E| |E∗| smax

Stack Overflow [14] 2.675.969 11.305.356 9.705.575 67
Arxiv 1.821.977 2.765.236 1.986.653 2811
DBLP [14] 1.930.378 3.700.681 2.467.389 280
MAG Geo [14], [15] 1.261.129 1.591.166 1.204.704 284
MAG Hist [14], [15] 1.034.876 1.813.147 896.062 925
Eventer [16] 77.343 350.460 131.621 620
NDC [14] 5.556 112.919 10.273 187
Senate [17] 294 29.157 21.721 99

Within each kernel, a buffer in local memory is allocated
using #omp parallel shared to store temporary label
histograms. However, dynamic local memory allocation is
not consistently supported across all backends, as it is avail-
able only on Intel GPUs. Thus, to ensure portability across
backends, a fixed-size static buffer is used. Threads within
a team cooperatively update this buffer, relying on #pragma
omp barrier for synchronization. For the small bucket, the
scratch memory is subdivided per thread to avoid contention,
and atomic updates to the global counter of label changes are
handled using #pragma omp atomic.

C. Kokkos

The Kokkos backend expresses label propagation with hi-
erarchical team parallelism and device-resident views, which
flattens the CSR and CSC data into Kokkos::Views al-
located in the selected execution space so the same source
compiles for NVIDIA, AMD, or Intel targets.

Each propagation phase is decomposed into three ker-
nel launches. Computation within each launch follows the
Kokkos hierarchical execution model, where teams, vector
lanes, and threads handle the large-, medium-, and small-
degree buckets, respectively. The edge phase is implemented
using Kokkos::parallel_for with a TeamPolicy,
meanwhile the vertex phase adopts the same structure but uses
a Kokkos::parallel_reduce to accumulate the total
number of vertex-label changes for convergence detection.
This configuration allows the league_size, team_size,
and vector_length parameters to be tuned per bucket,
ensuring balanced occupancy and efficient resource utilization
across architectures.

Within each kernel, temporary label histograms are allo-
cated in local memory through team.team_scratch(0).
When processing large- or medium-degree buckets, concur-
rent updates to the same histogram entries are protected us-
ing Kokkos::atomic_fetch_add operations, while for
smaller buckets, each thread maintains a private histogram in
scratch memory, eliminating the need for atomic synchroniza-
tion. The convergence condition is evaluated on the host after
each vertex phase based on the total number of vertex label
changes.

VI. EXPERIMENTAL EVALUATION

A. Datasets and Hardware Setup

Table I lists the datasets used in the experimental suite.
These datasets have been collected from the XGI-DATA
hypergraph repository [18], and they cover a broad range
of domains and structural properties, providing a represen-
tative benchmark for evaluating heterogeneous GPU perfor-
mance. The largest datasets (Stack Overflow, Arxiv,
and DBLP) model co-occurrence and collaboration patterns
in online and academic networks, featuring millions of ver-
tices and hyperedges of different sizes. The MAG-Geo and
MAG-Hist datasets originate from the Microsoft Academic
Graph and exhibit highly skewed degree distributions, which
stress memory bandwidth and expose load imbalance in the
propagation phases. Smaller datasets such as Eventer, NDC,
and Senate capture biomedical and social interactions and
exhibit greater structural irregularity and dense local connec-
tivity despite their limited size. We incorporated these smaller
datasets to also evaluate the performance of each programming
model on relatively small workloads.

Tests were performed on three heterogeneous GPU systems,
summarized in Table II. The SYCL implementation was
compiled using oneAPI v2025.2. For OpenMP, we employed
LLVM 17.0.6 on NVIDIA and AMD systems, and the icpx
compiler from oneAPI v2025.2 for the Intel platform. The
Kokkos implementation was built with Kokkos v4.7, using the
CUDA, HIP, and SYCL execution backends corresponding to
each device.

B. Runtime Analysis

To evaluate our implementations, we randomly generated
node labels for each dataset using a fixed seed as input to
the random number generator. Figure 3 reports the median
runtime over twenty executions for each hardware platform
and programming model across all datasets in Table I. Table III
presents the corresponding hardware metrics for each GPU on
each dataset. We collected these metrics using rocprof for
the AMD MI100, VTune for the Intel Max 1550, and ncu
for the NVIDIA V100.

On the AMD MI100 GPU, SYCL achieves the best perfor-
mance on the largest datasets, such as Stack Overflow
and Arxiv, while Kokkos performs slightly better on the
smaller ones. This behavior can be attributed to SYCL’s use
of an out-of-order queue, which allows concurrent execution
of multiple kernels within a propagation phase, improving
device utilization on large workloads. In particular, the Stack

TABLE II
HARDWARE SETUP OF THE DIFFERENT ARCHITECTURES EMPLOYED IN

THE EXPERIMENTS.

Vendor GPU VRAM Backend

AMD MI100 32GB ROCm v7.0 and HIP v6.1
Intel Max 1550 128GB LevelZero v2025.2
NVIDIA Tesla V100S 32GB CUDA v12.3
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TABLE III
PEAK VALUES EXPRESSED IN PERCENTAGES OF HARDWARE PERFORMANCE METRICS FOR ALL HARDWARE PLATFORMS FOR EACH PROGRAMMING

MODEL, EVALUATED ON THE MOST REPRESENTATIVE DATASETS.

Occupancy Mem. Throughput Comp. Throughput Cache Util.
SYCL OpenMP Kokkos SYCL OpenMP Kokkos SYCL OpenMP Kokkos SYCL OpenMP Kokkos

St
ac

k
O

ve
r. AMD MI100 86.7 44.4 78.1 87.0 36.3 80.0 77.9 66.9 83.4 75.9 77.5 77.6

Intel Max 1550 75.5 20.3 58.4 10.4 3.0 7.5 29.7 15.0 28.9 57.6 11.4 31.8
NVIDIA V100S 89.7 24.6 63.9 45.1 27.7 41.0 22.2 16.1 20.0 20.5 32.5 24.9

A
rx

iv AMD MI100 87.3 38.8 70.1 96.4 23.1 74.5 94.9 17.7 87.0 82.6 83.1 83.2
Intel Max 1550 92.6 10.0 60.2 3.1 1.3 1.1 17.4 4.9 14.6 19.6 4.2 8.6
NVIDIA V100S 90.4 24.9 61.9 79.9 20.3 21.2 51.9 8.4 9.6 35.8 41.1 33.2

D
B

L
P AMD MI100 84.4 37.3 91.7 82.7 32.6 73.6 85.7 61.9 91.0 81.4 79.4 79.9

Intel Max 1550 63.1 15.4 54.1 3.8 1.3 1.5 18.9 12.2 19.5 25.6 8.6 14.4
NVIDIA V100S 86.6 24.9 61.9 46.7 28.9 45.7 18.7 16.4 19.2 30.4 37.4 28.6

N
A

G
G

eo

AMD MI100 82.6 41.2 90.8 67.3 32.8 58.5 85.7 49.1 89.6 81.8 82.1 82.8
Intel Max 1550 46.9 15.9 44.9 0.0 1.1 0.0 15.4 11.6 19.6 29.9 7.0 13.8
NVIDIA V100S 85.0 24.8 60.8 49.0 27.2 37.9 21.4 16.8 17.6 53.0 39.2 26.4

N
A

G
H

is
t. AMD MI100 82.8 51.2 85.0 50.7 14.4 43.3 87.4 53.9 92.2 66.8 68.2 69.0

Intel Max 1550 19.1 10.2 16.5 0.1 0.7 0.0 5.9 9.0 10.8 5.8 3.6 4.8
NVIDIA V100S 83.2 24.4 50.3 50.6 16.6 17.6 30.4 15.6 14.0 61.2 46.8 29.3

E
ve

nt
er AMD MI100 79.8 66.0 83.1 73.9 16.3 39.4 85.7 8.5 88.0 82.9 86.0 85.8

Intel Max 1550 23.8 4.7 18.6 0.0 0.3 0.0 4.4 3.3 6.2 0.8 0.8 0.7
NVIDIA V100S 47.4 23.3 29.7 32.5 14.2 6.5 20.0 8.4 4.0 64.2 73.6 76.5

Overflow and Arxiv datasets yield larger sizes for the large
and medium buckets per phase, increasing parallelism and fa-
voring SYCL’s out-of-order execution over Kokkos. On AMD,
SYCL also sustains the highest memory throughput—up to
87% of the theoretical bandwidth.

On the Intel Max 1550 GPU, SYCL consistently achieves
the best performance across all datasets. This advantage is
mainly due to Kokkos’s reliance on SYCL as its execu-
tion backend on Intel GPUs, which introduces an additional
software layer that increases runtime overhead. As a re-
sult, Kokkos exhibits lower occupancy than native SYCL
despite similar computational patterns. Interestingly, OpenMP
achieves relatively better performance on this platform than
on NVIDIA or AMD GPUs, benefiting from the tighter
integration of the OpenMP offload runtime within the oneAPI
compiler stack. Nevertheless, its overall efficiency remains
limited by reduced cache utilization and modest instruction

throughput compared to SYCL. In addition, the lower mea-
sured memory throughput on Intel GPUs is mainly attributable
to their significantly higher peak memory bandwidth (3.2 TB/s,
compared to 1.2 TB/s for the MI100 and 1.13 TB/s for the
V100S), which reduces the relative utilization ratio.

On the NVIDIA V100S, SYCL consistently outperforms
both OpenMP and Kokkos across all datasets, with Kokkos
systematically achieving higher efficiency than OpenMP. This
trend aligns with the hardware metrics, as SYCL reaches up to
90% occupancy and over 45% of the peak memory through-
put, while Kokkos maintains balanced compute and cache
utilization. OpenMP, instead, shows the lowest occupancy and
compute throughput due to the absence of subgroup-level
parallelism and less efficient thread scheduling on the CUDA
backend. On the smallest dataset (Senate), however, SYCL
exhibits slightly higher overhead than Kokkos, likely due to the
fixed launch cost of its out-of-order queue and synchronization
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Fig. 3. Median of the runtime of the HLP algorithm on AMD MI100, Intel Max 1100, and NVIDIA V100S for each programming model implementation.
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mechanisms, which become more pronounced when the total
workload is insufficient to saturate the GPU.

In conclusion, SYCL consistently achieves the highest occu-
pancy across all programming models on the largest datasets,
while OpenMP exhibits the lowest. This difference is primarily
due to OpenMP’s lack of SIMT- and vector-level parallelism,
which limits its ability to efficiently process medium-sized
buckets.

C. Performance Portability Evaluation

To quantitatively assess performance portability, we adopt
the metric proposed by Pennycook et al. [19]. The metric, de-
noted as PP , is the harmonic mean of the roofline efficiencies
achieved across the set of target platforms H:

PP (A,P,H) =


|H|∑

i∈H

Λi

λi

, if λi > 0, ∀i ∈ H

0, otherwise

, (1)

where A is the application, P the programming model, and
H the set of devices. For each platform i ∈ H , λi is the
achieved roofline efficiency and Λi the corresponding peak. In
this work, both values are derived from the instruction roofline
model [20], which measures efficiency in terms of sustained
instruction throughput rather than floating-point operations.
This model is better suited to the Hypergraph Label Prop-
agation kernel, which is dominated by memory operations.
The resulting efficiency λi/Λi therefore captures how closely
each implementation approaches the instruction-level roofline
bound.

Figure 4 reports the performance portability (PP ) values
obtained across the most significant datasets and calculated
according to Equation 1. A value of PP = 0 indicates that
the application fails to execute or achieves poor hardware
usage on at least one platform, whereas PP = 1 represents
perfect performance portability, with the application achieving
peak performance on all platforms. Results indicate that SYCL
consistently achieves the highest PP across all datasets, with
a value ranging from 45% to 80%, followed by Kokkos with
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Fig. 4. Performance portability (PP ) of SYCL, OpenMP, and Kokkos across
the evaluated datasets.

38% to 46% and OpenMP from 17% to 29%. Both the figure
and the reported values exclude the smallest datasets, which
exhibit limited GPU utilization.

D. Productivity Analysis

We compared the programmability of SYCL, OpenMP, and
Kokkos using code size measured in terms of Source Lines
of Code (SLOC), defined as the number of non-empty, non-
comment lines of source [21]. OpenMP target offload provides
the most compact implementation (141 SLOC) thanks to
pragma-based directives and implicit memory management.
SYCL requires slightly more code (208 SLOC) due to ex-
plicit USM allocation and queue orchestration, but offers
finer control over kernel scheduling and memory hierarchy.
Kokkos is the most verbose (221 SLOC), mainly because of
team and scratch management. Overall, OpenMP minimizes
development effort, while SYCL and Kokkos expose richer
tuning knobs and a better portability–control balance.

VII. RELATED WORK

Compared to graphs, hypergraph algorithms must explicitly
handle high-order interactions encoded by hyperedges, which
significantly affect algorithm design and performance on par-
allel architectures. To address these challenges, several frame-
works have been developed to extend traditional graph analyt-
ics to hypergraphs. Notable examples include HyperX [22], a
distributed framework built in Apache Spark, and Hygra [23],
a shared-memory system that extends Ligra [24] for parallel
hypergraph algorithms. Despite this increasing interest in
hypergraph learning and GPU acceleration [3], research on
classical hypergraph algorithms, such as LP, remains largely
confined to CPU-based implementations [7], [25]–[27].

Specifically focusing on the task of community detection,
the ever-increasing availability of data has led to massive,
noisy, and dynamic networks; this growth, in turn, has driven
the field toward approaches that favor scalability, adaptability,
robustness, and simplicity (e.g., having as few tunable param-
eters) [8]. In this context, the LP [9] has gained widespread
popularity due to its efficiency, conceptual clarity, and ease of
implementation. Despite its simplicity, the LP has more than
13k variants designed for graphs [8].

Several studies have proposed parallel and GPU-accelerated
LP implementations to further enhance its performance on
large-scale networks. For instance, ν-LP [28] adapts LP for
SIMT architectures with an asynchronous scheme and a “Pick-
Less” heuristic to improve convergence stability, combined
with efficient per-vertex hash tables for label counting. Earlier
GPU implementations, such as those by Mišić et al. [29] and
Ye et al. [30], emphasize memory coalescing, and reduced
host–device transfers to achieve high throughput. Fiscarelli and
Brust [31] further improved stability using memory-augmented
LP that retains historical label states. Although frameworks
such as CUDA, SYCL, Kokkos, and OpenMP-offload enable
GPU execution, most existing evaluations focus on structured,
bandwidth-bound, or stencil-based kernels [32], while perfor-
mance portability for irregular, topology-driven algorithms,

Authors preprint.
Not for redistribution.
The definitive version was published at PDP 2026, © IEEE



such as hypergraph label propagation, remains underexplored.
Recent works, such as HyperG [33], address irregularity by
introducing balanced coarsening and refinement strategies to
manage varying vertex degrees and uneven workloads during
partitioning.

To the best of our knowledge, our work provides the first
GPU implementation of the label propagation algorithm for
hypergraphs and the first comparative study assessing its
productivity, performance, and performance portability across
SYCL, OpenMP, and Kokkos on GPUs from different hardware
vendors..

VIII. CONCLUSION

In this work, we presented three implementations of the
label propagation algorithm for community detection on hy-
pergraphs, targeting different programming models (SYCL,
OpenMP target offload, and Kokkos) across three hetero-
geneous architectures (AMD MI100, Intel Max 1550, and
NVIDIA V100S). We introduced a consistent set of opti-
mizations across all models to mitigate load imbalance and
improve memory access efficiency for sparse hypergraphs.
Experimental results demonstrated that SYCL consistently
achieved the best performance on the largest datasets and the
best stability across all hardware platforms. Finally, the results
highlighted that SYCL offered the most performance portable
scenario with a PP metric reaching up to 80%.
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