SIGMo: High-Throughput Batched Subgraph Isomorphism
on GPUs for Molecular Matching

Gennaro Cordasco
geordasco@unisa.it
University of Salerno
Salerno, Italy

Antonio De Caro
antdecaro@unisa.it
University of Salerno
Salerno, Italy

Abstract

Subgraph isomorphism is a fundamental graph problem with appli-
cations in diverse domains from biology to social network analysis.
Of particular interest is molecular matching, which uses a sub-
graph isomorphism formulation for the drug discovery process.
While subgraph isomorphism is known to be NP-complete and
computationally expensive, in the molecular matching formulation
anumber of domain constraints allow for efficient implementations.
This paper presents SIGMo, a high-throughput, portable subgraph
isomorphism framework for GPUs, specifically designed for batch
molecular matching. SIGMo takes advantage of the specific domain
formulation to provide a more efficient filter-and-join strategy:
the framework introduces a novel multi-level iterative filtering
technique based on neighborhood signature encoding to efficiently
prune candidates prior to a GPU-optimized join phase using a stack-
based DFS traversal. The GPU implementation is written in SYCL,
allowing portable execution on AMD, Intel, and NVIDIA GPUs. Our
experimental evaluation on a large dataset from ZINC demonstrates
up to 1470x speedup over state-of-the-art subgraph isomorphism
frameworks, and achieves a throughput of 7.7 billion matches per
second on a cluster with 256 GPUs.

CCS Concepts

+ Computing methodologies — Parallel computing method-
ologies; « Applied computing — Computational biology.

Keywords
Subgraph Isomorphism, GPU, Molecular Matching

ACM Reference Format:

Antonio De Caro, Gennaro Cordasco, Federico Ficarelli, and Biagio Cosenza.
2025. SIGMo: High-Throughput Batched Subgraph Isomorphism on GPUs
for Molecular Matching. In The International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC °25), November
16-21, 2025, St Louis, MO, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3712285.3759782

1 Introduction

Graph algorithms are a powerful abstraction for representing and
modeling a wide variety of problems, and are indeed used in diverse
domains such as biology [30], chemistry [51], and social network

SC °25, St Louis, MO, USA

© 2025 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in The International
Conference for High Performance Computing, Networking, Storage and Analysis (SC °25),
November 16-21, 2025, St Louis, MO, USA, https://doi.org/10.1145/3712285.3759782.

Federico Ficarelli
fficarelli@cineca.it
CINECA
Bologna, Italy

Biagio Cosenza
bcosenza@unisa.it
University of Salerno
Salerno, Italy

analysis [4]. High-performance implementations of graph algo-
rithms are therefore extremely important to tackle the complexity
of such analyses at scale, but efficient solutions are highly tailored
to specific algorithms and the underlying architecture.

Graph isomorphism, which concerns determining whether two
graphs are structurally identical (i.e., whether there exists a bijective
mapping between their vertices that preserves edges), can be solved
in quasipolynomial time [3]. In contrast, subgraph isomorphism,
which asks whether a smaller graph (the query graph or pattern)
exists as a subgraph within a larger graph (the data graph or target)
with structure preserved under an injective mapping, is known to
be NP-complete and, in general, considerably more computationally
demanding.

Despite its computational cost, the subgraph isomorphism prob-
lem has broad applications across several scientific fields where
the goal is to detect the presence of a known structure within a
larger dataset. Examples of subgraph isomorphism applications
range from computer vision [1, 57] to cheminformatics [15], and
from graph databases [2] to machine learning [47].

In this paper, we focus on subgraph isomorphism for molecular
matching: molecules and functional groups are represented by data
and query graphs, modeled as undirected, cyclic, and labeled graphs
where nodes represent atoms and edges represent chemical bonds.
This formulation has particular relevance to computer-aided drug
discovery process [22].

Despite the complexity of the underlying subgraph isomorphism
formulation, the molecular matching problem offers a number of
caveats that allow us for more efficient and domain-tailored algo-
rithm implementations.

First, the problem is subject to domain constraints: a limited
label set, low average degree, and high sparsity. Exploring such con-
straints allows advanced optimizations in the most computationally
expensive part of the algorithm, for example, a more efficient filter
in a filter-and-join strategy [52].

Second, while traditional graph analysis frameworks focus on
scaling with the size of the input graph, in molecular matching we
are more interested in scaling with the number of molecules we
can process per second, i.e. high throughput for batch queries. This
favors a different approach to parallelization, and in particular a
different mapping to modern massively parallel GPU architectures.

This paper proposes a high-performance GPU implementation
of batch subgraph isomorphism. The SYCL-based implementation
is performance-portable and supports both node-to-node (Find All)
and graph-to-graph (Find First) queries.

In summary, this paper makes the following contributions.

https://doi.org/10.1145/3712285.3759782
https://doi.org/10.1145/3712285.3759782
https://doi.org/10.1145/3712285.3759782

SC ’25, November 16-21, 2025, St Louis, MO, USA

o A novel vertex filtering algorithm that iteratively refines can-
didate sets by progressively expanding each node’s neigh-
borhood, enabling early pruning of invalid matches;

o SIGMo, the first high-performance GPU framework for batched
subgraph isomorphism, specifically designed for efficient
molecular matching at scale, supporting both exhaustive
enumeration of node-to-node matches (Find All) and graph-
to-graph matches (Find First);

e A comprehensive experimental evaluation of SIGMo against
state-of-the-art subgraph isomorphism frameworks, includ-
ing performance comparisons across NVIDIA, AMD, and
Intel GPU architectures, and a scalability study on a cluster
of 256 GPUs.

2 Background

In cheminformatics, molecules are naturally represented as graphs,
where atoms are vertices and atomic bonds are edges, both aug-
mented with physical and chemical properties as shown in Figure 1.

AN

(0]

Figure 1: Graph representation of N-Acetylpyrrole molecule.

Rule-based cheminformatics methods rely on the enumeration
of all isomorphisms between a query graph and a large number
of data graphs. A common example of such methods is the enu-
meration of protonation states [45] where graph patterns are used
to identify atoms with multiple proton configurations. Another
common example is rule-based force fields, commonly used in tasks
such as conformer generation and molecular dynamics. Computing
higher-order parameters like bond torsional angles, dihedral an-
gles, and bond lengths is typically done using quantum mechanics
simulations. To avoid the high computational cost associated with
quantum-level simulations, force fields are defined by precomput-
ing such parameters for representative sets of functional groups
(small molecular subgraphs) and collecting them in parameter ta-
bles. Each set of parameters is associated with an atom type, a label
that enables the retrieval of quantum-level parameters for atoms
based on their chemical environment (i.e., graph neighborhood). To
perform atom typing, all valid subgraph isomorphisms between the
input molecule (data graph) and all rules (query graphs) must be
enumerated. All widely used force fields are based on atom typing:
biomolecular (AMBER [38], CHARMM [54], OPLS-AA [26]), general
organic (MMFF94 [19], UFF [39]), and specialized (CGenFF [53],
Tripos [9]) force fields rely on isomorphism enumeration and are
widely used in small molecule generation, molecular docking, and
protein simulation. Rule-based force fields are the workhorses of
cheminformatics.

Among other tasks such as conformer generation [33] and gener-
ative chemistry [42], the most challenging application of subgraph
isomorphisms in terms of scale is searching for specific functional

De Caro et al.

groups in large compound databases [5]. Compound databases are
key assets for pharmaceutical companies, as they are typically cu-
rated and maintained as central components of drug discovery
workflows [22]. Moreover, molecular databases comprising tril-
lions of compounds are produced as outcomes of large-scale virtual
screening campaigns [17].

2.1 Molecular Matching

In this work, we focus on the application of the subgraph isomor-
phism problem for the cheminformatics of small molecules—an
area of particular relevance to computer-aided drug discovery [22].
To represent molecules and functional groups, both data and query
graphs are modeled as undirected, cyclic, and labeled. Their vertices
have degree-bounded by the maximum number of atomic bonds
an element can form, according to its valence electron configura-
tion and chemical context. Since drug discovery typically targets
the chemical space of organic molecules, the distribution of vertex
degrees cannot exceed 6 with an average value of approximately 4
(due to carbon atoms) [10]. Data graphs reflect the size of drug-like
molecules, which usually consist of a few hundred atoms, with
most drug molecules containing fewer than 200 atoms [28]. In con-
trast, the number of molecules processed during a virtual screening
campaign can scale to the trillions [17]. Meanwhile, the number of
patterns to be searched is fixed and relatively small, reaching up to
a thousand only in specific fingerprinting tasks [31].

2.2 Problem Definition and Constraints

We use standard notation for graphs: a graph is a pair G = (Vg, Eg)
of sets of nodes V5 and edges Eg where each edge connects a pair
of nodes, ie., Eg € V X V. By graph, we mean a simple, finite,
undirected, connected graph. The order and size of G are denoted
by n = |Vg| and m = |Eg|.

For a set of nodes X C V5, we denote G[X] as the induced
subgraph of G generated by X, that is, the graph whose node set is
X and whose edge set consists of all the edges in Eg that have both
endpoints in X. Given two nodes u,v € Vg, we denote dg(u,v) as
the distance between u and v in G. Moreover, for a node v € Vg,
we denote Ng(v) = {u € V5 | (u,v) € Eg} as the neighborhood of
v and Ng ={ueVs|u+#ovAds(uv) <d} as the neighborhood
of radius d around v. In the following, we omit the subscript G
whenever the graph is clear from the context.

In this paper, we deal with node-labeled graphs where a set
of labels £ identifies some peculiarity of each node. Formally, a
node-labeled graph is a triple G = (V, E, L) where (V, E) defines
the structure of the graph and L : V — £ is a mapping from the
set of nodes V to the set of labels L.

Definition 2.1. Let Gp = (Vp, Ep, Lp) be a data graph and Gg =
(Vo,Eg, Lg) be a query graph. A subgraph H = Gp[X] induced by
X C Vp is isomorphic to G if there exists a bijection f : Vg — X
such that:

(1) for each v € Vg we have Lg(v) = Lp(f(v))
(2) if (v,u) € Eg then (f(v), f(u)) € Eg

The (1) indicates that the function f must preserve labels, while
(2) ensures that all edges in the query graph are contained in the
subgraph of the target graph induced by X.

SIGMo

We will consider the following problem.

NODE-LABELED SUBGRAPH MATCHING (NLSM):
Input: A data graph Gp = (Vp, Ep, Lp) and a query
graph Gp = (VQ, EQ,LQ).
Output: X = {X C Vp | Gp[X] is isomorphic to Gp}.
This formulation sets the basis for our domain-aware subgraph
matching strategies.

3 Molecular Matching Strategy

The NLSM problem is a fundamental problem with applications in
various domains, including molecular matching for drug discovery
where the graphs are characterized by:

o A limited label set, constrained by the chemical elements in
the periodic table;

o Alow average degree (typically < 4), reflecting atomic va-
lency constraints;

e High sparsity (> 95%) [14];

Our approach follows the filter-and-join strategy [52], consisting
of two main phases. In the filtering phase, the algorithm iteratively
refines the set of candidate nodes for each node in the query graph,
eliminating those that would lead to invalid results. Once filtering
is complete, the joining phase begins, where candidate nodes are
assembled into valid candidate chains, which are then combined
and validated to produce the final solutions.

Filter. The filtering operation (see Algorithm 1) uses the concept
of node signature, represented as an array of | £| integers, to evaluate
compatibility between nodes. Note that node labels represent the
intrinsic properties of graph nodes (e.g., atom type), whereas node
signatures are derived features that encode the distribution of labels
in their neighborhood.

The filtering process is conducted in multiple stages. At stage i,
the signature of a node v is computed based on its neighborhood
within a radius of i. As more stages are performed, additional can-
didates are filtered out, thereby simplifying the subsequent join
operations. The goal is to find a trade-off between the number of
stages and the number of resulting candidates.

Initially, the algorithm populates the set of candidates for each
query node with data nodes that share the same label. In the first
stage, it constructs a signature for each query and data node by
counting, for each label, the number of neighboring nodes with
that label.

To satisfy the conditions defined in Definition 2.1, the signature
of a data node u must dominate the signature of the corresponding
query node. Specifically, for each label £ € £, the data node u must
have at least as many neighbors with label ¢ as indicated in the
query node’s signature.

Subsequent stages are similar to the first one, but the signatures
are computed over an increasingly extended neighborhood.

To build the signature of a node, we borrowed the idea of n—view
from VSGM [25]. To identify the i-view of a particular node u, which
corresponds to the neighborhood of radius i around u, we calculate
the graph power G, defined as the graph that connects nodes in G
if their distance is at most i. This is achieved by performing i BFS
steps starting from node u.

SC ’25, November 16-21, 2025, St Louis, MO, USA

Algorithm 1 Filtering process pseudocode.

1: function FILTER(GQ = (VQ, EQ, LQ), Gp = (Vp,Ep,Lp))

2 C « In1T1ALIZECANDIDATES (GQ, Gp)

3 k1

4 repeat

5 So < GENERATESIGNATURES (G, k)

6 Sp < GENERATESIGNATURES(Gp, k)

7 C « REFINECANDIDATES(GQ,GD,SQ, Sp,C)

8 k—k+1

9 until k = s where s is the maximum amount of iterations

10: return C

11: kernel GENERATESIGNATURES(G = (V,E, L), k)

12: » S is the signatures matrix where S(v,) denotes the number
of occurrences of nodes having label [in the neighborhood of
radius k around v

13: > Rk(U) is the number of nodes at distance k from v
14: for allv € V do > parallel for
15: Rk (v) — N¥(0) \ N*1(2)

16: for all u € R*(v) do

17: S(v,L(u)) « S(v,L(u)) +1

18: return S

19: kernel REFINECANDIDATES(GQ, Gp, S0, Sps Cpm,)
20: for all vq € Vp do

21: C(og) =0

22: for allv; € Vp do > parallel for
23: for all o4 € Vp do

24: if vg € Cpres(vg) then

25: foralll € £ do

26: if Sp(vg,1) < Sp(vg, 1) then

27: C(vg) < C(vq) U{vg}

28: return C

29: kernel INITIALIZECANDIDATES(GQ, Gp)

30: > C is the candidate vector where C(vg) is the set of

candidates for vg.
31: for all o4 € Vp do

32: C(og) =0

33: for all vy € Vp do > parallel for
34 for all o4 € Vp do

35: if Lo (vq) = Lp(vg) then

36: C(vg) < C(vg) U {vg}

37: return C

The rationale behind this iterative approach is that the structural
mismatches between the query graph and the data graph may not
be immediately apparent at distance 1 but become evident when
considering larger neighborhood contexts. By iteratively increasing
the scope of the node’s view, the algorithm systematically eliminates
nodes that cannot be part of a valid mapping, reducing the search
space before the more computationally expensive join phase.

During each refinement step, filtering operations are applied
to further reduce the candidate set for each node. It is important
to note that the filtering performed at iteration i must take into
account the candidate set from iteration i — 1. Specifically, if a data

SC ’25, November 16-21, 2025, St Louis, MO, USA

GPU Kernel

@ Host Memory

De Caro et al.

GPU Memory _> Data Movement

ngr;eGnlzsphs SIGMo | — l
@ CSR-GO f
\ ;
/!

Generate Query
@) Signatures G'

<Quenes
ssss te Dat:
Convert to Allocate ssss Generate Data .y,
Ll

23 Signatures G'

—

nd R

Ho i = GMCR =¥ i)

’ Filter Mapping Join

————
> fr

@ CSR-GO CSR-GO Candidates
Molecules fori = 1 — Refinement Iters.
Molecules
(Data Graphs)

Figure 2: Framework Overview. SIGMo’s pipeline includes six stages. It starts by converting input graphs into the CSR-GO @
format and initializing candidate sets ®. The filtering phase then iteratively generates neighborhood-based signatures ® to
prunes candidates @. After filtering, query graphs are mapped to data graphs @, and the join phase identifies valid subgraph
matches ®. Colored lines indicate inputs/outputs of each kernel throughout the pipeline.

node uy is not a valid candidate for a query node u4 at iteration
i — 1, it cannot become a valid candidate at iteration i.

To filter multiple query and data graphs, we join all query graphs
and all data graphs into two separate disconnected graphs.

Filter Complexity Analysis. To analyze the complexity of the filter
algorithm (Alg. 1), let us break it down into its core components.
The signature generation step performs a BES starting from each
node in the graph, which in total takes O(nymy) time, where ny
and my denote the number of nodes and edges in Gp respectively.
The InitializeCandidates procedure takes O(ngng) time. Then,
for each stage, the Ref ineCandidates procedure takes O(ngng| L|)
time. Hence, the overall complexity is O(ngmg+kngng| L|). Assum-
ing that k and | L] are constants, the total cost of the filter algorithm
is dominated by the time required to perform BFS traversals from
each node in the data graph.

Join. The joining phase uses a backtracking approach over the
pruned candidates to explore how they can be mapped to query
nodes while preserving the query topology. During this process,
edge labels are evaluated to prevent invalid matches.

4 SIGMo Implementation

In this section, we describe the implementation details of SIGMo.
An overview of the framework pipeline is presented in Figure 2.

SIGMo is implemented using SYCL [18], a single-source, cross-
platform abstraction layer that enables portable programming across
heterogeneous hardware architectures. In contrast to most exist-
ing GPU-accelerated subgraph isomorphism frameworks—typically
implemented in CUDA and thus limited to NVIDIA GPUs—SYCL al-
lows SIGMo to target a broader range of devices, including NVIDIA,
AMD, and Intel GPUs. This portability is particularly important
given current hardware trends: as of November 2024, 7 out of the
top 10 systems in the TOP500 list [50] are equipped with GPUs
from vendors other than NVIDIA.

Throughout this section, we adopt the SYCL platform and mem-
ory model terminology. A work-item corresponds to a single GPU
thread executing a kernel instance. A work-group is a one-, two-, or
three-dimensional collection of work-items, analogous to a CUDA
block. A sub-group represents a contiguous set of work-items that

P e T 0

. Graph Offsets

P 4 G, 8 i (Our Contribution)_>
Go Q ; G, —re) I
D

cmumnlnd.cesh402132403657866 |

o=
©O N

Figure 3: Illustration of the CSR-GO representation.

execute in Single Instruction Multiple Threads (SIMT) fashion; this
concept is equivalent to a CUDA warp or an AMD wavefront. In
terms of memory hierarchy, local memory refers to the shared (lo-
cal) memory accessible to all work-items within a work-group,
commonly used for low-latency communication and data reuse. In
contrast, private memory denotes memory that is exclusive to a
single work-item—analogous to thread-local storage.

4.1 CSR-GO Graph Representation

To represent both query and data graphs, we propose a data struc-
ture based on the classic Compressed Sparse Row (CSR) format [46],
extended with an additional layer we term graph offsets. This repre-
sentation, referred to as CSR-GO, is designed to handle disconnected
graphs without losing information about connected components.
Specifically, it introduces an auxiliary vector, graph offsets, whose
length equals the number of graphs plus one. Each entry in this
vector serves as a pointer mapping a segment of the row offsets
array to a specific graph, working analogously to how row offsets
map rows to adjacency lists. Figure 3 illustrates this representation.

Given a node ID, the corresponding graph can be efficiently
determined via a binary search over the graph offsets array. This
extension enables the storage and processing of multiple graphs
within a unified structure, without duplicating metadata or sacrific-
ing query performance. Moreover, it is particularly advantageous
during the join operation, as described in Section 4.6. In our design,
each work item is responsible for processing a single graph. As a
result, the relevant range in the row offsets array can be efficiently
retrieved by accessing only the graph offsets array.

SIGMo

4.2 Signature Representation

SIGMo vertex signatures are implemented as masked bitsets. Specif-
ically, a 64-bit integer is partitioned into groups of bits, with each
group corresponding to a particular vertex label. The number of
supported labels is bounded by the set of elements in the periodic
table, with a focus on those commonly found in organic molecules.
However, element frequencies in organic compounds are highly
skewed [36]; for example, hydrogen (H) and carbon (C) occur far
more frequently than elements like silicon (Si).

To account for this imbalance, we apply a masking strategy that
allocates more bits to frequently occurring labels (e.g., H and C),
and fewer bits to rare ones (e.g., Si). This allows the signature to
represent label counts more accurately while staying within the
64-bit constraint.

In cases where the count of a label exceeds the maximum rep-
resentable value within its allocated bit group (i.e., overflow), the
group remains unchanged. Despite this saturation, the resulting
signature remains valid for filtering. This is because a data vertex
is considered a valid candidate if, for each label, the count encoded
in the query signature does not exceed that of the corresponding
data signature.

4.3 Candidates Representation

We represent the candidate set for each query node using a bitmap
structure to facilitate insertion and removal operations. Specifically,
we employ arrays of integers, where each bit set to 1 indicates a
valid candidate data node. These bitmaps are stored in GPU memory
in a contiguous, row-major layout—each row corresponding to a
query node—to exploit coalesced memory access during filtering
[49]. This layout ensures that threads within a sub-group access
nearby memory locations, which helps optimize global memory
bandwidth. Figure 4 illustrates this coalescing pattern. On modern
GPUs, such access is considered coalesced, as long as the memory
region is compact and properly aligned.

Updating the bitmap requires atomic operations to safely modify
individual bits when multiple threads write concurrently. Con-
tention is naturally limited because each integer in the bitmap cov-
ers only a small group of contiguous data nodes, and each thread
is assigned to a single data node. As a result, atomic conflicts are
limited to adjacent threads within the same sub-group that may
access the same word. The granularity of the bitmap—determined
by the number of data nodes represented per integer—can be tuned
by adjusting the integer size. Aligning this granularity with the
hardware’s sub-group size can improve efficiency. However, if the
integer size matches the sub-group size exactly, the memory con-
troller may issue memory transactions containing only a single
integer, leading to reduced throughput.

The candidate bitmaps are the most memory-intensive data struc-
ture in our pipeline. At peak usage, they consume up to 1 GB of
GPU memory to represent 3,413 query nodes and 2,745,872 data
nodes.

4.4 Filtering Candidates

The filtering process is divided into multiple refinement iterations,
each separated by host-side synchronization. It consists of three

SC ’25, November 16-21, 2025, St Louis, MO, USA

Addr. Candidates Gached in l:l:l %

0x00 Local Memory ~ Work-groups Work-item

ol 001
0 dy -+ dy -~ dy - dpy - dyg
[0992992900202229297

Data Nodes

Ox03

3
8
q1| ox04 iaqn éﬂ
OX0E S ... [0}
) J © Candidates S
0x08 e a
[
0x08 dy -+ dy - dy e dyy dyg é
009 [229222292222222J222] | @
43| oxon qo
0x0B ?{,
0x0C
(a) Memory layout. (b) Access pattern.

Figure 4: Candidates representation.

distinct GPU kernels: query signature refinement, data signature
refinement, and candidates filtering.

The signature refinement kernels assign one work-item per node—
either in the query or data graph—and perform a BFS traversal
starting from the assigned node. The depth of the BFS is determined
by the current refinement iteration. To avoid restarting the BFS
from scratch in each iteration, we cache the frontier after every step
and reuse it as the starting point for the next iteration. Additionally,
we maintain the set of nodes reached in each iteration to compute
the difference from the previous step. This allows us to refine the
signature using only newly discovered nodes.

The candidate filtering kernel assigns a single work-item to each
data node as shown in Figure 4b. As discussed in the previous
section, performance can degrade when the bitmap granularity
aligns exactly with the hardware’s sub-group size, due to ineffi-
cient memory coalescing. To address this, each work-item within
a work-group prefetches the relevant bitmap integers into local
memory before the filtering phase begins. This ensures efficient and
coalesced access to memory across the entire work-group. During
filtering, each work-item iterates over all query nodes to check
whether its assigned data node is a valid candidate. For each query
node, the work-item also iterates over a fixed set of labels, eval-
uating whether they satisfy the candidate validity conditions. In
this filtering workload, increasing the work-group size can further
improve performance, as memory bandwidth remains the primary
bottleneck.

4.5 Mapping

Mapping is a crucial step to improve the performance of the join. In
this step, each data graph is mapped only to the query graphs that
are potential matches, discarding any query graph that contains
nodes with zero candidates in that data graph. To efficiently store
the mapping between data graphs and query graphs, we designed
a Graph Mapping Compressed Representation (GMCR), which con-
sists of two vectors: data graph offsets and query graph indices. The
data graph offsets behaves similarly to the row offsets in the CSR

SC ’25, November 16-21, 2025, St Louis, MO, USA

format, and stores the starting position of each data graph’s entries
in the query graph indices. The query graph indices contain the in-
dices of all query graphs that potentially match a given data graph.
In the GMCR, a boolean is designated for every query graph index
to signify if a match occurred between that query graph and the
respective data graph during the join phase.

The mapping phase consists of two kernels: the first kernel
performs a prefix sum to compute the total size of the query graph
indices vector, and to determine the offsets that populate the data
graph offsets vector. To maintain consistency, the data graph offsets
array is also updated on the host by performing an inclusive sum.
The host then allocates the query graph indices and the boolean
vectors, followed by the second kernel that populates the query
graph indices vector.

4.6 Joining Partial Matches

In our evaluation, we considered both Depth-First Search (DFS) and
Breadth-First Search (BFS) traversal strategies. While BFS generates
multiple partial matches at each level—leading to an exponential
increase in memory usage—DFS constructs only a single partial
match per step, enabling more efficient memory usage. Additionally,
DFS naturally aligns with backtracking approaches, as candidates
can be evaluated sequentially along the traversal path.

Given that the query and data graphs we process are relatively
small and exhibit tree-like structures—with treewidth not exceeding
2—both BFS and DFS produce comparable traversal orders. However,
we adopt DFS due to its compatibility with backtracking and its
superior memory efficiency.

To implement DFS-based backtracking in SIGMo, we account for
the fact that GPU architectures do not support recursive function
calls. Instead, we simulate recursion by maintaining an explicit
stack data structure in private memory [56]. The maximum depth
of this stack is bounded by the number of nodes in the query graph.
Since our queries are small (no more than 30 nodes), we allocate a
dedicated stack for each GPU work-item, allowing it to explore the
search space without memory spillage.

In our execution model, each data graph is assigned to a work-
group. The work-items within that group iterate over all valid query
graphs, with each thread handling one query at a time. This thread-
level parallelism is feasible because both the data and query graphs
are small. By constraining the candidate set to only include nodes
from the current data graph, each work-item can efficiently explore
the full candidate space for a query without exceeding the available
resources.

In contrast to the filter phase, which benefits from a larger work-
group size to efficiently parse all candidates, the join phase performs
better with a smaller work-group size, as the number of matching
query graphs per data graph can vary significantly, leading to an
under utilization of the GPU resources for large work-group sizes.

Although this approach may appear naive at first glance, we
argue that it offers an effective balance between computational
complexity and GPU resource management. Within the specific
context of molecular graph matching—characterized by small graph
sizes and low treewidth—this method achieves strong practical
performance under real-world constraints.

De Caro et al.

5 Experimental Evaluation

We tested our approach on a dataset specifically designed to bench-
mark substructure searching algorithms in molecular graphs [16],
from which we deleted single-atom patterns, resulting in 618 query
graphs and 114,901 data graphs. This dataset was sourced from the
ZINC database [24], which is currently the best source of commer-
cially available molecular structures. We also used the whole ZINC
dataset to assess the scalability of our framework.

The experiments were carried out on a system with dual Intel
Xeon Gold 5218 CPUs, 192GB RAM, and an NVIDIA V100S GPU
with 32GB VRAM. We compiled SIGMo with oneAPI v2024.2.0 [23]
compiler and CUDA v555.42 drivers.

le6 1le9
2.00- Total Candidates _ 5 ¢
o 1.75-
o -3.0 ,
§ 1.50- o
j _25 ©
8_1.25- %
0 c
4 -2
% 1.00 08
3 =
5 0.75- -1.5 g
: « 2
$ 0.50- L10%
*0.25- |
J. & 8 B B (05
0.00- — l:] T eh——iemeeren e

1 2 3 4 5 6 7 8
Refinement Iterations

Figure 5: Summary of the distribution of candidate set sizes
for each refinement iteration. The box represents the distri-
bution of the candidates set sizes for each node and aligns
with the left axis, whereas the line indicates the total number
of candidates, aligning with the right axis.

8
—e— Filter Time
7 Join Time
6 Total Time
0 5
Q
£7 :
=3 Loweit Time
2
1
| e —e——o— e ¢
o | Ha=—=e

1 2 3 4 5 6 7 8
Refinement Iterations

Figure 6: Comparison of filter and join time per each refine-
ment iteration on the entire dataset.

SIGMo
® Total Time
Diameter 1 Diameter 2 Diameter 3
1.2
0.25 0.6 1.0
0 0.2 0.4 0.75
[
£ 0.5
F Diameter 7 Diameter 8 Diameter 9
© 0.6
o
L 4.0
0.4 0.6
2.0 02 04

1234561738 1234561738 1234561738

2.0

SC ’25, November 16-21, 2025, St Louis, MO, USA

3.0

® MinTime
Diameter 4 Diameter 5 Diameter 6
3.0 15
2.0
1.0 1.0 1.0
Diameter 10 Diameter 11 Diameter 12
0.6 0.8 0.8
0.6 0.6
0.4 0.4 0.4
0.2 0.2

12345678 12345678 123456178

Refinement Iterations

Figure 7: Total execution time of SIGMo across refinement iterations, grouped by query graph diameter.

5.1 Assessing SIGMo

In this section, we evaluate the performance of SIGMo. It is impor-
tant to clarify that when we refer to refinement iteration i, it means
that each node has visibility over its neighbors up to distance i — 1.
For instance, refinement iteration 1 implies that each node is only
aware of its own label, with no neighborhood context.

5.1.1 Candidate Sets Pruning. Each refinement iteration begins
with the signature refinement of both query and data graph nodes.
While some node signatures converge earlier than others, the over-
head of continuing to refine already-converged nodes is negligible
relative to the overall computational cost. In practice, the total time
required to perform signature refinement across all query and data
nodes does not exceed 10 milliseconds, even in the largest datasets.

Figure 5 illustrates the distribution of the candidate set sizes
across query nodes (represented as box plots) and the total number
of candidates (shown as a line). A significant reduction in can-
didate sets is observed after the first iteration, highlighting the
effectiveness of early pruning. Beginning around iteration 6, the
total number of candidates plateaus, indicating that most query
graphs have reached convergence and no longer benefit from fur-
ther refinement.

Despite this convergence, outliers persist across iterations, partic-
ularly in the earlier stages. These outliers are attributed to query pat-
terns that correspond to frequent molecular substructures, which
are more likely to occur across a wide range of molecules, and thus
resist pruning. As shown in Figure 5, these outliers do reduce their
candidate sets in later iterations—when they gain a broader view of
their neighborhood—but they still retain a relatively large number
of candidates compared to the rest.

5.1.2 Filter vs. Join. Figure 6 presents a comparison between the
execution times of the filter and join phases across different refine-
ment iteration counts. The results reveal a turning point: beyond
a certain number of refinement iterations, the cost of additional
filtering outweighs the performance gains achieved during the join
phase. In other words, excessive refinement may reduce the can-
didate set further, but at the expense of increased overhead that
negates the benefits in subsequent stages.

This observation is supported by Figure 5, which shows that
the total number of candidates begins to plateau after iteration 6.
Beyond this point, only a marginal number of additional candidates

are eliminated, offering decreasing returns in terms of join phase
speedup, hence resulting in a higher overall runtime.

It is important to note that this optimal refinement depth may
vary depending on the diameter of the query graphs. Datasets
containing query graphs with larger diameters may require more
iterations before convergence is reached, as a broader neighbor-
hood view becomes necessary to effectively prune candidates. To
investigate this, we grouped the query graphs based on their di-
ameters and balanced the groups to contain the same number of
graphs. Figure 7 illustrates the total execution time of SIGMo for
these grouped query graphs. As the diameter increases, we observe
that the execution time curves shift to the right, indicating that
the best number of refinement iterations occurs later. This indi-
cates that graphs with larger diameters require more refinement
steps. Anomalies appear in the cases with diameters 8, 10, 11, and
12, where the execution exhibits irregular behavior. These query
graphs did not produce matches because in each case at least one
node had zero candidates from the first iteration. This led to null
join operations, as the mapping phase failed to associate any query
graph with a corresponding data graph. A similar behavior is ob-
served in the group of query graphs with a diameter of 9, where
the GMCR determines that no matches are possible only starting
from the second iteration.

5.1.3 Resources Utilization. On the evaluated dataset comprising
618 query graphs and 114,901 data graphs—for a total of 3,413 query
nodes and 2,745,872 data nodes—SIGMo occupies approximately
1 GB of memory. In particular, 80% of the memory footprint is
attributed to the bitset-based representation of the candidate sets.
The candidate size can be determined in advance by considering
[Vol X |Vp|/8 bytes. The data graphs account for approximately
64 MB of memory usage, while the query graphs require only 90 KB,
both represented in the CSR-GO format. Additionally, the signature
representations for both query and data nodes collectively consume
around 128 MB.

Figure 8 shows the percentage of GPU occupancy during SIGMo
execution in six refinement iterations, profiled through NVIDIA
DCGM which defines GPU occupancy as the fraction of resident
warps on a multiprocessor, relative to the maximum number of con-
current warps supported on a multiprocessor [34]. The test was per-
formed on an NVIDIA V100S GPU. The results reveal that the
filtering phase reaches peak GPU utilization. The observed drops

SC ’25, November 16-21, 2025, St Louis, MO, USA

100 E Filter
_ i Mapping
X 80 ci Join
~ -9:

? 60 E:
g =
S 2
4 £

5 0 ©)
o o
G 20 o
I

0 500 1000 1500 2000

Application Runtime (ms)

Figure 8: Profiling of the NVIDIA V100S GPU occupancy
during the SIGMo runtime with six refinement iterations.

—
> —
o Py
5 103 il e HBM Roof
% -—~ L2 Roof
=~ - e
=] g AW e L1 Roof
[l v £
c £ 102 Puliiliy —— Compute Roof
L0 /// // Filt
B A B A Filter .
= P Mapping
@ A Join
c 10! -
1072 1071 100 10! 102 103

Instruction Intensity (Instr/Byte)

Figure 9: Instruction Roofline of SIGMo execution with six
refinement iterations on NVIDIA V100S.

in occupancy are primarily attributed to host-side synchroniza-
tion overhead, as is evident by the presence of six distinct peaks
corresponding to the filter phase. The mapping phase is relatively
brief, lasting approximately 50 milliseconds. This short duration
contributes to the observed GPU occupancy, which ranges between
47% and 55%. In contrast, the join phase exhibits a more stable oc-
cupancy of around 48%, mainly due to memory bottlenecks arising
from the irregular access patterns required to read the query and
data graphs. This behavior is evident in Figure 9, which presents the
Instruction Roofline Model (IRM) [12]—a more suitable tool for our
use case compared to the standard Roofline Model [29]. The first
filter kernel considers the neighborhood at distance 0, which means
that only the label is evaluated, motivating the low instruction
intensity.

The underutilization of the join phase observed in Figure 8 is
mainly attributable to warp-level divergence: different threads pro-
cess query graphs of varying size and complexity, which leads to
heterogeneous control paths and reduced occupancy. While alterna-
tive designs such as assigning one query per sub-group can reduce
divergence, they also lower parallelism and increase memory con-
tention, resulting in an increased overall execution time.

De Caro et al.

3087.84 108 8.64x107
Find All - Our approach
103 Find First g 1.89%107
184.86 § 107
2102 70.61 £
G | £ 2.33x10°
g Oour =
E approach| 3108
10!)
3
2.12 .
F 4
0 5.39x10
10 / =
SIGMo VF3 GSI CuTs SIGMo VF3 GSI CuTs

(a) Execution time (the lower is (b) Throughput (the higher is bet-
better). ter).

Figure 10: Comparison of SIGMo with other CPU and GPU
state-of-the-art subgraph isomorphism frameworks.

5.2 State-of-the-Art Comparison

We evaluated our framework against three leading frameworks,
namely VF3 [7], GSI [61], and cuTS [58]. nvcc v12.3 compiled GSI
and cuTS, while VF3 was compiled using g++ 11.4.0.

In all the experiments we did not consider the time to allocate
and initialize data structures. To run the experiments on VF3, GSI,
and cuTS, we merged the data graphs into a single disconnected
graph and tested queries individually. VF3 appears to be a better
solution for matching several queries on a large set of data graphs
compared to GSI and cuTS. In addition, GSI ran out of memory
on the largest query graphs (on graphs with more than 20 nodes).
Figure 10a shows the comparison of the execution time to find
matches. Both SIGMo and VF3 support the early stopping when
finding a match between a query graph and a data graph, while
GSI and cuTS do not. We achieve a speedup of 33.6X compared to
VF3, 1470.4X compared to GSI, and 88X compared to cuTS.

Figure 10b shows the throughput, defined as the number of
matches per second. To calculate the throughput, we considered
for both SIGMo and VF3 the time required to find all the matches.
The cuTS framework does not support labels, leading to a higher
number of matches for a single query graph.

In summary, the performance difference is mainly attributed to
SIGMo’s design: unlike previous frameworks optimized for par-
allelism on a single large graph, SIGMo targets high-throughput
execution on batches of labeled sparse graphs. Its iterative filtering
prunes the candidate space, CSR-GO and GMCR ensure memory-
efficient storage and mapping, and the stack-based DFS join enables
thread-local backtracking—together accounting for the large per-
formance gains in Figure 10.

5.3 Performance Portability

Assessing performance portability is inherently challenging, partic-
ularly when evaluating a novel solution like SIGMo that has no di-
rect counterpart or baseline [37]. In this section, we provide insights
into how SIGMo performs across different hardware platforms. We
evaluated SIGMo on three different systems, each equipped with
a different GPU architecture: an NVIDIA V100S, an AMD MI100,
and an Intel Max 1100. Compilation was performed using oneAPI
v2024.2 across all platforms to ensure consistency.

SIGMo

Table 1: SIGMo configuration on three hardware platforms.

GPU Candidates Filter Join
bitmap integer =~ Work-group Work-group
size size
NVIDIA V100S 32 bit 1024 128
AMD MI100 64 bit 512 64
Intel Max 1100 32 bit 512 32

Figure 11 presents the execution time across two main com-
putation phases—filter and join—and the overall execution time
for multiple refinement iterations, while Table 1 reports the best
configuration parameters for SIGMo identified through manual
tuning.

Among the evaluated platforms, the AMD MI100 consistently
delivers the fastest execution times, reaching a minimum of 1.70
seconds at five refinement iterations, compared to 2.12 seconds
for the NVIDIA V100S at six iterations and 2.65 seconds for the
Intel Max 1100 at two iterations. In contrast, the Intel Max 1100
exhibits the highest total runtimes, driven primarily by the elevated
cost of the Filter phase. On this device, the overhead of additional
refinement iterations outweighs the benefits of further candidate
reduction, making extra iterations less advantageous.

To better contextualize performance variations, we break down
the computation into its two main phases: Filter and Join. All metrics
discussed below were obtained using VTune (Intel), Nsight Compute
(NVIDIA), and Rocprof (AMD). The Filter phase is more compute-
intensive with a low memory footprint (<1.2GB). This puts more
pressure on the compute units rather than memory. In this setting,
architectural differences naturally emerge: the Intel GPU offers sig-
nificantly lower peak compute performance (22 TFLOPS) compared
to AMD MI100 (180 TFLOPS) and NVIDIA V100S (130 TFLOPS).
Despite this difference, all GPUs achieve over 93% of their sustained
peak compute throughput during the Filter phase with two refine-
ment iterations. With a single refinement iteration, the Filter phase
becomes memory-bound, as shown in the Roofline plot (Figure 9).
In this case, Intel’s higher memory bandwidth enables it to outper-
form the other devices. The Join phase initially incurs substantial
memory traffic (16 GB) due to the large number of candidates
stored in the GMCR. This results in memory-dominated behavior
during the first iteration, again favoring the Intel Max GPU. As
candidates are pruned, memory access becomes more selective, and
the workload shifts toward compute. Notably, L2 cache hit rates
exceed 90% across all GPUs and iterations while occupancy remains
around 50%. Additionally, during the Join phase with a single refine-
ment iteration—-when each query graph retains many candidates—
AMD shows the highest sensitivity to control-flow divergence, due
to its larger wavefront size (64 threads vs. 32 for NVIDIA and 16
for Intel). The wider execution group increases the chance of di-
vergence within a wavefront, reducing execution efficiency. This
effect is no longer observed with additional refinement iterations.
Overall, hardware profiling reveals consistent behavior across all
platforms starting from the second refinement iteration, indicating
that observed performance differences reflect inherent hardware
capabilities.

SC ’25, November 16-21, 2025, St Louis, MO, USA

4 mEE NVIDIA V1005
EEE AMD MI100 o
2 EEE Intel Max 110:] I I o
0 o~ d J
—~10
) -
o
g5 5
E
0 BN el Bl el Bl Bl W
10 2.65
L0212 -
5 | l &
0 oom et el il el el nl
1 2 3 4 5 6 7 8

Refinement Iterations

Figure 11: Filter, join, and total execution times of SIGMo on
NVIDIA V100S, AMD MI100, and Intel Max 1100 GPUs. The
total time includes an arrow indicating the fastest execution
for each GPU.

Dataset Scale Factor
123456 7 8 91011121314151617 1819 2021 2223242526

—e— Find All b ;233
40 -~ Find First X195 o i
— x1.7_7_./
239 x15.8 o~ S
E x13.9 9~ g
£ x12.1e”" s
w20 ;%i’/ x22.05
s ot £ x18.5 , X202 A"
= x6.5 @~ x X16.7 kA 3
/2/‘ x13.1 , X1A9 \A Tk e
10 s L d T Xg;z_kf}},f'_‘—>A"A
/; a L4 x5, xilt/&—f—i
x1.0 @X2.7_, “A"-A"7
0 ie%’_r—r &

R S S S e N N e e S e e S S S I
2 5 8 10131619 21 24 27 30 32 35 38 41 43 46 49 52 54 57 60 63 65 68 71
Total Data Nodes (x10°)

Figure 12: Single-GPU scalability of SIGMo in both ‘Find
All’ and ‘Find First’ modes. The plot shows how the perfor-
mance scale by increasing the dataset size. The bottom x-axis
represents the size of the data graphs, while the top x-axis
indicates the corresponding dataset scale factors. Numbers
along each line denote the relative execution time compared
to the baseline (first execution).

The relatively small performance gap between the three architec-
tures provides additional evidence of the efficiency and portability
of our approach, demonstrating that SIGMo can achieve competitive
performance even on diverse hardware.

5.4 Scalability Evaluation

We evaluated the weak scaling of SIGMo on single and multiple
GPUs.

5.4.1 Single GPU Scalability. We evaluated the scalability of our
framework on a single GPU. Figure 12 illustrates how SIGMo per-
formance scales as the number of data graphs increases up to the
maximum available memory of the GPU, while the number of

SC ’25, November 16-21, 2025, St Louis, MO, USA

17 233
5 —e— Find All /’
16 ./. g 2% .- FindFirst _®
15 -— § 231 ./
Z14 / £ 230 - s
[* ~ /
£13 552 e &
= Q
12 '§,228 e
11 | - J— o _g 227 P
10—~ =
& 226 K
16 32 64 128 256 16 32 64 128 256
GPUs # GPUs

(a) Execution time (the lower is (b) Throughput (the higher is bet-
better). ter).

Figure 13: Execution of SIGMo on a multi-node environment
with up to 256 NVIDIA A100 GPUs.

query graphs remains constant. Overall, the framework demon-
strates good scalability with input size, exhibiting sublinear growth
in execution time. This trend is especially clear in the Find First exe-
cution. In contrast, the Find All execution displays more variability
and more pronounced increases in runtime at higher scale factors.
However, this is acceptable because we assign a different data graph
to each work-group. As a result, when all available compute units
are saturated, SYCL schedules these executions into multiple join
kernels. This explains the overhead observed, for example, when
increasing the scale factor from 16 to 17.

5.4.2 Multi Node Scalability. We evaluated the performance of
SIGMo on an HPC cluster, where each node is equipped with
four NVIDIA A100 GPUs. The experiments were carried out using
molecules extracted from the ZINC dataset [48], along with a fixed
set of 389 queries. For inter-node communication, we used Intel MPI
v2021.11. Figure 13 reports the median results of five executions
performed with 16, 32, 64, 128, and 256 GPUs, each running six
refinement iterations. The plot demonstrates that our framework
scales efficiently across the cluster, exhibiting linear performance
gains in log-log space as the number of nodes increases.

We used static partitioning on the ZINC dataset, assigning 500,000
molecules to each GPU. Consequently, increasing the number of
nodes led to a proportional increase in the total number of molecules
processed from the dataset. Figure 14 illustrates the runtime of each
MPI process, where each process is mapped to a single GPU in
the 256-GPU configuration. Due to the static partitioning strategy,
variations in execution time are observed due to the different num-
ber of candidates produced, reflecting differences in the molecular
workloads assigned to each process [43]. Although more adaptive
load-balancing approaches have been shown to improve scalabil-
ity [27], the observed runtime variability remains low, with a coef-
ficient of variation of only 4% in the Find First execution and 8% in
the Find All execution.

At peak scale, SIGMo successfully processed up to 128 million
molecules in about 17 seconds, producing 129,575 billion total
matches in the Find All execution and achieving a peak throughput
of up to 7.7 billion matches per second.

De Caro et al.

[Find All [Find First

) 63 127 191 255
GPU ID

Figure 14: Runtime of each MPI process on 256 GPUs.

6 Related Work

Subgraph isomorphism is a well-known NP-complete problem with
extensive research across CPU and GPU platforms. The early foun-
dational work by Ullmann [52] laid the theoretical foundations,
introducing a backtracking algorithm with pruning strategies. This
was followed by more advanced techniques such as VF2 [11], and
its successors VF2Plus[8] and VF3 [7], which introduced more ad-
vanced state-space search techniques with improved performance
on biological graphs [16], making them widely used on CPU ar-
chitectures. Several CPU-based subgraph isomorphism algorithms
have shown strong performance across various benchmarks. RI
and its extension RI-DS [6] use recursive search and degree se-
quence filtering to efficiently prune the candidate space, particu-
larly in sparse graphs. The Glasgow Subgraph Solver [32] applies
constraint programming techniques combined with bitset-based
data structures. TurboISO [21] introduces a neighborhood label fre-
quency index and region exploration for fast matching over large
graphs. QuickSI [44] focuses on minimizing verification time using
a heuristic-driven matching order, making it one of the first scal-
able solutions for labeled graphs. These frameworks, while highly
optimized for single-query execution, are not designed for large
batched molecular matching, which is the primary focus of SIGMo.

Although CPU-based algorithms remain effective, they struggle
to scale to high-throughput workloads. This has led to increased
interest in GPU-based frameworks that exploit massive parallelism.
Among these, cuTS [58], GSI [61], PARSEC [13], and STMatch [56]
are notable. CuTS uses a trie-based structure and performs well in
distributed multi-GPU environments, Parsec accelerates subgraph
enumeration using parallel traversal and candidate expansion strate-
gies, while STMatch accelerates subgraph matching on GPUs using
stack-based loop optimizations to replace recursive DFS, reducing
divergence and improving efficiency for individual pattern matches.
These frameworks lack support for labeled graphs, which limits
their utility in molecular domains, where labels represent meaning-
ful constraints for matching. GSI and its scalable extension SGSI [60]
leverage parallelism on GPU architectures, but suffer from high
memory overhead, especially when processing large query graphs.
DGSM [20] also implements GPU-accelerated subgraph matching
using depth-first search strategies using a backtracking unrolling
strategy. However, it does not target specific constraints of batched
molecular matching, and their scalability is often limited to smaller
datasets or single query workloads. Our method draws inspiration
from VSGM [25], which introduces a view-based approach to filter

SIGMo

Table 2: Comparison against the state of the art.

Domain- GPU Batched Exact

specific Offload =~ Matching Matching
O’Boyle et al. [35] v X X X
Carletti et al [7] X X X v
Xiang et al. [58] X CUDA X v
Zeng et al. [60, 61] X CUDA X v
Our work v Heterog.! 4 v

candidate nodes by examining multi-hop neighborhoods. Although
VSGM achieves strong filtering efficiency, it operates on single
query-data graph pairs and does not address batching or memory
optimization for large-scale molecular datasets. SIGMo builds upon
this idea by introducing iterative signature refinement [40], allow-
ing highly selective filtering that reduces the search space before the
join phase. This is especially critical for molecular matching, where
node labels and neighborhood context carry significant meaning.

Various techniques for molecular matching circumvent the need
for subgraph isomorphism, opting instead for fingerprint-based
algorithms [40], canonical SMARTS/SMILES evaluation [35], and
molecular embeddings learned through graph neural networks
(GNNs) [41, 55, 59]. Despite their efficiency, these methods are
inherently approximate and can produce not only false positives,
but also false negatives—potentially missing relevant molecular
matches.

Table 2 summarizes the contributions of SIGMo in relation to
some of the state-of-the-art frameworks. In contrast to these works,
SIGMo is the first portable high-performance subgraph isomorphism
GPU framework for molecular matching, designed to query a large
dataset of molecules simultaneously in a batched fashion.

7 Conclusion

In this study, we presented SIGMo, the first portable and high-
throughput GPU subgraph isomorphism framework tailored for
the molecular matching problem, which exploits GPU parallelism
to match multiple queries on multiple data graphs simultaneously.
We also proposed a novel filter strategy that is designed to prune
candidates in labeled graphs through inspection of neighborhood
constraints. Although we focused on molecular matching, the fil-
ter strategy is broadly applicable to labeled sparse graphs and can
also be applied in domains such as malware detection and graph
database queries, reinforcing its relevance beyond this specific ap-
plication.

Experimental results show that SIGMo significantly outperforms
the current state-of-the-art GPU solution, achieving speedups of
up to 1470.4x and surpassing the leading CPU-based solution by
up to 33.6X. Furthermore, SIGMo demonstrates excellent scalabil-
ity, reaching a peak throughput of 7.7 billion matches per second
on a cluster equipped with 256 GPUs. As a next step, we plan to
extend SIGMo to support wildcard atoms and bonds, which are
used in cheminformatics to express flexible or partially specified
substructures.

!Heterog. refers to support for heterogeneous backends such as CUDA, HIP, LevelZero,
and OpenCL.

SC ’25, November 16-21, 2025, St Louis, MO, USA

References

[1] M. A. Abdulrahim and M. Misra. 1998. A Graph Isomorphism Algorithm for
Object Recognition. Pattern Analysis and Applications 1, 3 (1998), 189-201. doi:10.
1007/BF01259368

[2] Merve Asiler and Adnan Yazici. 2018. BB-Graph: A Subgraph Isomorphism Algo-
rithm for Efficiently Querying Big Graph Databases. doi:10.48550/arXiv.1706.06654
arXiv:1706.06654 [cs]

[3] Laszl6 Babai. 2016. Graph isomorphism in quasipolynomial time [extended
abstract]. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016. ACM, 684-697.
doi:10.1145/2897518.2897542

[4] John A Barnes and Frank Harary. 1983. Graph theory in network analysis. Social
networks 5, 2 (1983), 235-244.

[5] Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha, and Al-
fredo Ferro. 2013. A Subgraph Isomorphism Algorithm and Its Application to
Biochemical Data. BMC Bioinformatics 14, S7 (2013), S13. doi:10.1186/1471-2105-
14-S7-S13

[6] Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha, and Al-
fredo Ferro. 2013. A subgraph isomorphism algorithm and its application to
biochemical data. BMC bioinformatics 14 (2013), 1-13.

[7] Vincenzo Carletti, Pasquale Foggia, Alessia Saggese, and Mario Vento. 2017.
Introducing VF3: A new algorithm for subgraph isomorphism. In Graph-Based
Representations in Pattern Recognition: 11th IAPR-TC-15 International Workshop,
GbRPR 2017, Anacapri, Italy, May 1618, 2017, Proceedings 11. Springer, 128-139.

[8] Vincenzo Carletti, Pasquale Foggia, and Mario Vento. 2015. VF2 Plus: An improved

version of VF2 for biological graphs. In Graph-Based Representations in Pattern

Recognition: 10th IAPR-TC-15 International Workshop, GbRPR 2015, Beijing, China,

May 13-15, 2015. Proceedings 10. Springer, 168-177.

Matthew Clark, Richard D. Cramer, and Nicole Van Opdenbosch. 1989. Validation

of the General Purpose Tripos 5.2 Force Field. Journal of Computational Chemistry

10, 8 (1989), 982-1012. doi:10.1002/jcc.540100804

Jonathan Clayden, Nick Greeves, and Stuart Warren. 2012. Organic Chemistry

(2nd ed ed.). Oxford university press.

Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (sub)

graph isomorphism algorithm for matching large graphs. IEEE transactions on

pattern analysis and machine intelligence 26, 10 (2004), 1367-1372.

Nan Ding and Samuel Williams. 2019. An Instruction Roofline Model for GPUs.

In 2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High

Performance Computer Systems (PMBS). IEEE, 7-18. doi:10.1109/PMBS49563.2019.

00007

[13] Vibhor Dodeja, Mohammad Almasri, Rakesh Nagi, Jinjun Xiong, and Wen-mei

Hwu. 2022. PARSEC: Parallel subgraph enumeration in CUDA. In 2022 IEEE

International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 168—

178.

Yuangi Du, Shiyu Wang, Xiaojie Guo, Hengning Cao, Shujie Hu, Junji Jiang, Aish-

warya Varala, Abhinav Angirekula, and Liang Zhao. 2021. GraphGT: Machine

Learning Datasets for Graph Generation and Transformation. In NeurIPS 2021.

[15] Hans-Christian Ehrlich and Matthias Rarey. 2011. Maximum Common Subgraph

Isomorphism Algorithms and Their Applications in Molecular Science: A Review.
WIREs Computational Molecular Science 1, 1 (2011), 68-79. doi:10.1002/wcms.5

[16] Hans-Christian Ehrlich and Matthias Rarey. 2012. Systematic benchmark of

substructure search in molecular graphs-From Ullmann to VF2. Journal of chem-

informatics 4 (2012), 1-17.

Davide Gadioli, Emanuele Vitali, Federico Ficarelli, Chiara Latini, Candida

Manelfi, Carmine Talarico, Cristina Silvano, Carlo Cavazzoni, Gianluca Palermo,

and Andrea Rosario Beccari. 2022. EXSCALATE: An Extreme-Scale Virtual

Screening Platform for Drug Discovery Targeting Polypharmacology to Fight

SARS-CoV-2. IEEE Transactions on Emerging Topics in Computing 11, 1 (2022),

1-12. doi:10.1109/TETC.2022.3187134

[18] The Khronos® SYCL™ Working Group. 29-03-2023. SYCL 2020 Specification

(revision 8) — registry.khronos.org. https://registrykhronos.org/SYCL/specs/sycl-

2020/html/sycl-2020.html

Thomas A. Halgren. 1996. Merck Molecular Force Field. I. Basis, Form, Scope,

Parameterization, and Performance of MMFF94. Journal of Computational Chem-

istry 17, 5-6 (1996), 490-519. doi:10.1002/(SICI)1096-987X(199604)17:5/6<490::

AID-JCC1>3.0.CO:2-P

Wei Han, Connor Holmes, and Bo Wu. 2022. DGSM: A GPU-Based Subgraph

Isomorphism framework with DFS exploration. In 2022 IEEE/ACM Redefining

Scalability for Diversely Heterogeneous Architectures Workshop (RSDHA). IEEE,

1-11.

Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turboiso: towards

ultrafast and robust subgraph isomorphism search in large graph databases. In

Proceedings of the 2013 ACM SIGMOD international conference on management of

data. ACM, 337-348.

[22] Jp Hughes, S Rees, Sb Kalindjian, and Kl Philpott. 2011. Principles of Early Drug

Discovery. British Journal of Pharmacology 162, 6 (2011), 1239-1249. doi:10.1111/
j-1476-5381.2010.01127 x

—
o)

[10

[11

[12

=
et

[17

[19

[20

[21

https://doi.org/10.1007/BF01259368
https://doi.org/10.1007/BF01259368
https://doi.org/10.48550/arXiv.1706.06654
https://arxiv.org/abs/1706.06654
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1186/1471-2105-14-S7-S13
https://doi.org/10.1186/1471-2105-14-S7-S13
https://doi.org/10.1002/jcc.540100804
https://doi.org/10.1109/PMBS49563.2019.00007
https://doi.org/10.1109/PMBS49563.2019.00007
https://doi.org/10.1002/wcms.5
https://doi.org/10.1109/TETC.2022.3187134
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
https://doi.org/10.1111/j.1476-5381.2010.01127.x
https://doi.org/10.1111/j.1476-5381.2010.01127.x

SC ’25, November 16-21, 2025, St Louis, MO, USA

[23]

[24]

[25]

[26

[27

[28]

[29]

[30

[31]

[32]

[33]

(34
[35]

[36
[37

[38]

[39]

[40]

[41

[42]

[43]

[44]

[45]

Intel®. 2024. oneAPI Base Toolkit. https://www.intel.com/content/www/us/en/
developer/tools/oneapi/base-toolkit.html

John J Irwin and Brian K Shoichet. 2005. ZINC- a free database of commercially
available compounds for virtual screening. Journal of chemical information and
modeling 45, 1 (2005), 177-182.

Guanxian Jiang, Qihui Zhou, Tatiana Jin, Boyang Li, Yunjian Zhao, Yichao Li, and
James Cheng. 2022. VSGM: view-based GPU-accelerated subgraph matching on
large graphs. In SC22: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1-15.

William L. Jorgensen, David S. Maxwell, and Julian Tirado-Rives. 1996. De-
velopment and Testing of the OPLS All-Atom Force Field on Conformational
Energetics and Properties of Organic Liquids. Journal of the American Chemical
Society 118, 45 (1996), 11225-11236. doi:10.1021/ja9621760

Jonas H. M"uller Kornd"orfer, Ahmed Eleliemy, Ali Mohammed, and Florina M.
Ciorba. 2022. LB4OMP: A Dynamic Load Balancing Library for Multithreaded
Applications. IEEE Trans. Parallel Distributed Syst. 33, 4 (2022), 830-841. doi:10.
1109/TPDS.2021.3107775

Paul D. Leeson and Brian Springthorpe. 2007. The Influence of Drug-like Concepts
on Decision-Making in Medicinal Chemistry. Nature Reviews Drug Discovery 6,
11 (2007), 881-890. doi:10.1038/nrd2445

Matthew Leinhauser, René Widera, Sergei Bastrakov, Alexander Debus, Michael
Bussmann, and Sunita Chandrasekaran. 2022. Metrics and Design of an Instruc-
tion Roofline Model for AMD GPUs. ACM Trans. Parallel Comput. 9, 1 (Jan. 2022).
doi:10.1145/3505285

Jiajie Li, Jan-Niklas Schmelzle, Yixiao Du, Simon Heumos, Andrea Guarracino,
Giulia Guidi, Pjotr Prins, Erik Garrison, and Zhiru Zhang. 2024. Rapid GPU-
Based Pangenome Graph Layout. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis. IEEE Press.
doi:10.1109/SC41406.2024.00035

Candida Manelfi, Valerio Tazzari, Filippo Lunghini, Carmen Cerchia, Anna Fava,
Alessandro Pedretti, Pieter F. W. Stouten, Giulio Vistoli, and Andrea Rosario
Beccari. 2024. “DompeKeys”: A Set of Novel Substructure-Based Descriptors
for Efficient Chemical Space Mapping, Development and Structural Interpreta-
tion of Machine Learning Models, and Indexing of Large Databases. Journal of
Cheminformatics 16, 1 (2024), 21. doi:10.1186/s13321-024-00813-4

Ciaran McCreesh, Patrick Prosser, and James Trimble. 2020. The Glasgow sub-
graph solver: using constraint programming to tackle hard subgraph isomorphism
problem variants. In International Conference on Graph Transformation. Springer,
316-324.

Jeffrey Mendenhall, Benjamin P. Brown, Sandeepkumar Kothiwale, and Jens
Meiler. 2021. BCL::Conf: Improved Open-Source Knowledge-Based Conforma-
tion Sampling Using the Crystallography Open Database. Journal of Chemical
Information and Modeling 61, 1 (2021), 189-201. doi:10.1021/acs.jcim.0c01140
NVIDIA. 2025. NVIDIA DCGM. https://developer.nvidia.com/dcgm.

Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeer-
sch, and Geoffrey R Hutchison. 2011. Open Babel: An open chemical toolbox.
Journal of cheminformatics 3 (2011), 1-14.

Linus Pauling. 1988. General chemistry. Courier Corporation.

Simon J Pennycook, Jason D Sewall, and Victor W Lee. 2019. Implications of
a metric for performance portability. Future Generation Computer Systems 92
(2019), 947-958.

Jay W. Ponder and David A. Case. 2003. Force Fields for Protein Simulations.
In Advances in Protein Chemistry. Vol. 66. Elsevier, 27-85. doi:10.1016/S0065-
3233(03)66002-X

A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff. 1992.
UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular
Dynamics Simulations. Journal of the American Chemical Society 114, 25 (1992),
10024-10035. doi:10.1021/ja00051a040

David Rogers and Mathew Hahn. 2010. Extended-connectivity fingerprints.
Journal of chemical information and modeling 50, 5 (2010), 742-754.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang,
and Junzhou Huang. 2020. Self-supervised graph transformer on large-scale
molecular data. Advances in neural information processing systems 33 (2020),
12559-12571.

Robert Schmidt, Emanuel S. R. Ehmki, Farina Ohm, Hans-Christian Ehrlich,
Andriy Mashychev, and Matthias Rarey. 2019. Comparing Molecular Patterns
Using the Example of SMARTS: Theory and Algorithms. Journal of Chemical
Information and Modeling 59, 6 (2019), 2560-2571. doi:10.1021/acs.jcim.9b00250
Steffen Seckler, Nikola Tchipev, Hans-Joachim Bungartz, and Philipp Neumann.
2016. Load Balancing for Molecular Dynamics Simulations on Heterogeneous
Architectures. In 23rd IEEE International Conference on High Performance Comput-
ing, HiPC 2016, Hyderabad, India, December 19-22, 2016. IEEE Computer Society,
101-110. doi:10.1109/HIPC.2016.021

Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2008. Taming
verification hardness: an efficient algorithm for testing subgraph isomorphism.
Proceedings of the VLDB Endowment 1, 1 (2008), 364-375.

John C. Shelley, Anuradha Cholleti, Leah L. Frye, Jeremy R. Greenwood,
Mathew R. Timlin, and Makoto Uchimaya. 2007. Epik: A Software Program for pK

[46

[47]

(48]

N
)

[54]

[55]

[56]

[57]

(58]

[59

[60]

[61]

De Caro et al.

a Prediction and Protonation State Generation for Drug-like Molecules. Journal
of Computer-Aided Molecular Design 21, 12 (2007), 681-691. doi:10.1007/s10822-
007-9133-z

Richard A Snay. 1976. Reducing the profile of sparse symmetric matrices. Bulletin
géodésique 50, 4 (Dec. 1976), 341-352.

Yunhao Sun, Guanyu Li, Jingjing Du, Bo Ning, and Heng Chen. 2022. A Subgraph
Matching Algorithm Based on Subgraph Index for Knowledge Graph. Frontiers
of Computer Science 16, 3 (2022), 163606. doi:10.1007/s11704-020-0360-y
Benjamin I Tingle, Khanh G Tang, Mar Castanon, John J Gutierrez, Munkhzul
Khurelbaatar, Chinzorig Dandarchuluun, Yurii S Moroz, and John J Irwin. 2023.
ZINC-22—A free multi-billion-scale database of tangible compounds for ligand
discovery. Journal of chemical information and modeling 63, 4 (2023), 1166-1176.
Nishith Tirpankar and Hari Sundar. 2018. Towards Triangle Counting on GPU
using Stable Radix binning. In 2018 IEEE High Performance Extreme Computing
Conference, HPEC 2018, Waltham, MA, USA, September 25-27, 2018. IEEE, 1-6.
doi:10.1109/HPEC.2018.8547543

TOP500.0rg. 2024. November 2024 | TOP500. https://top500.org/lists/top500/2024/
11/

Nenad Trinajstic. 2018. Chemical graph theory. CRC press.

Julian R Ullmann. 1976. An algorithm for subgraph isomorphism. Journal of the
ACM (JACM) 23,1 (1976), 31-42.

K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E.
Darian, O. Guvench, P. Lopes, I. Vorobyov, and A. D. Mackerell. 2010. CHARMM
General Force Field: A Force Field for Drug-like Molecules Compatible with the
CHARMM All-atom Additive Biological Force Fields. Journal of Computational
Chemistry 31, 4 (2010), 671-690. doi:10.1002/jcc.21367

Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman, and David A.
Case. 2004. Development and Testing of a General Amber Force Field. Journal of
Computational Chemistry 25, 9 (2004), 1157-1174. doi:10.1002/jcc.20035
Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. 2022.
Molecular contrastive learning of representations via graph neural networks.
Nature Machine Intelligence 4, 3 (2022), 279-287.

Yihua Wei and Peng Jiang. 2022. STMatch: accelerating graph pattern matching
on GPU with stack-based loop optimizations. In SC22: International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE, 1-13.
E.K. Wong. 1992. Model Matching in Robot Vision by Subgraph Isomorphism.
Pattern Recognition 25, 3 (1992), 287-303. do0i:10.1016/0031-3203(92)90111-U
Lizhi Xiang, Arif Khan, Edoardo Serra, Mahantesh Halappanavar, and Aravind
Sukumaran-Rajam. 2021. cuTS: scaling subgraph isomorphism on distributed
multi-GPU systems using trie based data structure. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. ACM, 1-14. doi:10.1145/3458817.3476214

Xinxing Yang, Genke Yang, and Jian Chu. 2024. GraphCL-DTA: a graph con-
trastive learning with molecular semantics for drug-target binding affinity predic-
tion. IEEE Journal of Biomedical and Health Informatics 28, 8 (2024), 4544-4552.
Li Zeng, Lei Zou, and M Tamer Ozsu. 2022. SGSI-A Scalable GPU-friendly
Subgraph Isomorphism Algorithm. IEEE Transactions on Knowledge and Data
Engineering 35, 11 (2022), 11899-11916.

Li Zeng, Lei Zou, M Tamer Ozsu, Lin Hu, and Fan Zhang. 2020. GSI: GPU-
friendly subgraph isomorphism. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE). IEEE, 1249-1260.

https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html
https://doi.org/10.1021/ja9621760
https://doi.org/10.1109/TPDS.2021.3107775
https://doi.org/10.1109/TPDS.2021.3107775
https://doi.org/10.1038/nrd2445
https://doi.org/10.1145/3505285
https://doi.org/10.1109/SC41406.2024.00035
https://doi.org/10.1186/s13321-024-00813-4
https://doi.org/10.1021/acs.jcim.0c01140
https://developer.nvidia.com/dcgm
https://doi.org/10.1016/S0065-3233(03)66002-X
https://doi.org/10.1016/S0065-3233(03)66002-X
https://doi.org/10.1021/ja00051a040
https://doi.org/10.1021/acs.jcim.9b00250
https://doi.org/10.1109/HIPC.2016.021
https://doi.org/10.1007/s10822-007-9133-z
https://doi.org/10.1007/s10822-007-9133-z
https://doi.org/10.1007/s11704-020-0360-y
https://doi.org/10.1109/HPEC.2018.8547543
https://top500.org/lists/top500/2024/11/
https://top500.org/lists/top500/2024/11/
https://doi.org/10.1002/jcc.21367
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1016/0031-3203(92)90111-U
https://doi.org/10.1145/3458817.3476214

	Abstract
	1 Introduction
	2 Background
	2.1 Molecular Matching
	2.2 Problem Definition and Constraints

	3 Molecular Matching Strategy
	4 SIGMo Implementation
	4.1 CSR-GO Graph Representation
	4.2 Signature Representation
	4.3 Candidates Representation
	4.4 Filtering Candidates
	4.5 Mapping
	4.6 Joining Partial Matches

	5 Experimental Evaluation
	5.1 Assessing SIGMo
	5.2 State-of-the-Art Comparison
	5.3 Performance Portability
	5.4 Scalability Evaluation

	6 Related Work
	7 Conclusion
	References

