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Abstract
Subgraph isomorphism is a fundamental graph problem with appli-

cations in diverse domains from biology to social network analysis.

Of particular interest is molecular matching, which uses a sub-

graph isomorphism formulation for the drug discovery process.

While subgraph isomorphism is known to be NP-complete and

computationally expensive, in the molecular matching formulation

a number of domain constraints allow for efficient implementations.

This paper presents SIGMo, a high-throughput, portable subgraph

isomorphism framework for GPUs, specifically designed for batch

molecular matching. SIGMo takes advantage of the specific domain

formulation to provide a more efficient filter-and-join strategy:

the framework introduces a novel multi-level iterative filtering

technique based on neighborhood signature encoding to efficiently

prune candidates prior to a GPU-optimized join phase using a stack-

based DFS traversal. The GPU implementation is written in SYCL,

allowing portable execution on AMD, Intel, and NVIDIA GPUs. Our

experimental evaluation on a large dataset from ZINC demonstrates

up to 1470× speedup over state-of-the-art subgraph isomorphism

frameworks, and achieves a throughput of 7.7 billion matches per

second on a cluster with 256 GPUs.

CCS Concepts
• Computing methodologies→ Parallel computing method-
ologies; • Applied computing→ Computational biology.
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1 Introduction
Graph algorithms are a powerful abstraction for representing and

modeling a wide variety of problems, and are indeed used in diverse

domains such as biology [30], chemistry [51], and social network
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analysis [4]. High-performance implementations of graph algo-

rithms are therefore extremely important to tackle the complexity

of such analyses at scale, but efficient solutions are highly tailored

to specific algorithms and the underlying architecture.

Graph isomorphism, which concerns determining whether two

graphs are structurally identical (i.e., whether there exists a bijective

mapping between their vertices that preserves edges), can be solved

in quasipolynomial time [3]. In contrast, subgraph isomorphism,

which asks whether a smaller graph (the query graph or pattern)

exists as a subgraph within a larger graph (the data graph or target)

with structure preserved under an injective mapping, is known to

be NP-complete and, in general, considerably more computationally

demanding.

Despite its computational cost, the subgraph isomorphism prob-

lem has broad applications across several scientific fields where

the goal is to detect the presence of a known structure within a

larger dataset. Examples of subgraph isomorphism applications

range from computer vision [1, 57] to cheminformatics [15], and

from graph databases [2] to machine learning [47].

In this paper, we focus on subgraph isomorphism for molecular
matching: molecules and functional groups are represented by data

and query graphs, modeled as undirected, cyclic, and labeled graphs

where nodes represent atoms and edges represent chemical bonds.

This formulation has particular relevance to computer-aided drug

discovery process [22].

Despite the complexity of the underlying subgraph isomorphism

formulation, the molecular matching problem offers a number of

caveats that allow us for more efficient and domain-tailored algo-

rithm implementations.

First, the problem is subject to domain constraints: a limited

label set, low average degree, and high sparsity. Exploring such con-

straints allows advanced optimizations in the most computationally

expensive part of the algorithm, for example, a more efficient filter

in a filter-and-join strategy [52].

Second, while traditional graph analysis frameworks focus on

scaling with the size of the input graph, in molecular matching we

are more interested in scaling with the number of molecules we

can process per second, i.e. high throughput for batch queries. This

favors a different approach to parallelization, and in particular a

different mapping to modern massively parallel GPU architectures.

This paper proposes a high-performance GPU implementation

of batch subgraph isomorphism. The SYCL-based implementation

is performance-portable and supports both node-to-node (Find All)
and graph-to-graph (Find First) queries.

In summary, this paper makes the following contributions.

https://doi.org/10.1145/3712285.3759782
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• A novel vertex filtering algorithm that iteratively refines can-

didate sets by progressively expanding each node’s neigh-

borhood, enabling early pruning of invalid matches;

• SIGMo, the first high-performanceGPU framework for batched

subgraph isomorphism, specifically designed for efficient

molecular matching at scale, supporting both exhaustive

enumeration of node-to-node matches (Find All) and graph-

to-graph matches (Find First);
• A comprehensive experimental evaluation of SIGMo against

state-of-the-art subgraph isomorphism frameworks, includ-

ing performance comparisons across NVIDIA, AMD, and

Intel GPU architectures, and a scalability study on a cluster

of 256 GPUs.

2 Background
In cheminformatics, molecules are naturally represented as graphs,

where atoms are vertices and atomic bonds are edges, both aug-

mented with physical and chemical properties as shown in Figure 1.
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Figure 1: Graph representation of N-Acetylpyrrole molecule.

Rule-based cheminformatics methods rely on the enumeration

of all isomorphisms between a query graph and a large number

of data graphs. A common example of such methods is the enu-

meration of protonation states [45] where graph patterns are used

to identify atoms with multiple proton configurations. Another

common example is rule-based force fields, commonly used in tasks

such as conformer generation and molecular dynamics. Computing

higher-order parameters like bond torsional angles, dihedral an-

gles, and bond lengths is typically done using quantum mechanics

simulations. To avoid the high computational cost associated with

quantum-level simulations, force fields are defined by precomput-

ing such parameters for representative sets of functional groups

(small molecular subgraphs) and collecting them in parameter ta-

bles. Each set of parameters is associated with an atom type, a label
that enables the retrieval of quantum-level parameters for atoms

based on their chemical environment (i.e., graph neighborhood). To

perform atom typing, all valid subgraph isomorphisms between the

input molecule (data graph) and all rules (query graphs) must be

enumerated. All widely used force fields are based on atom typing:

biomolecular (AMBER [38], CHARMM [54], OPLS-AA [26]), general

organic (MMFF94 [19], UFF [39]), and specialized (CGenFF [53],

Tripos [9]) force fields rely on isomorphism enumeration and are

widely used in small molecule generation, molecular docking, and

protein simulation. Rule-based force fields are the workhorses of

cheminformatics.

Among other tasks such as conformer generation [33] and gener-

ative chemistry [42], the most challenging application of subgraph

isomorphisms in terms of scale is searching for specific functional

groups in large compound databases [5]. Compound databases are

key assets for pharmaceutical companies, as they are typically cu-

rated and maintained as central components of drug discovery

workflows [22]. Moreover, molecular databases comprising tril-

lions of compounds are produced as outcomes of large-scale virtual

screening campaigns [17].

2.1 Molecular Matching
In this work, we focus on the application of the subgraph isomor-

phism problem for the cheminformatics of small molecules—an

area of particular relevance to computer-aided drug discovery [22].

To represent molecules and functional groups, both data and query

graphs are modeled as undirected, cyclic, and labeled. Their vertices

have degree-bounded by the maximum number of atomic bonds

an element can form, according to its valence electron configura-

tion and chemical context. Since drug discovery typically targets

the chemical space of organic molecules, the distribution of vertex

degrees cannot exceed 6 with an average value of approximately 4

(due to carbon atoms) [10]. Data graphs reflect the size of drug-like

molecules, which usually consist of a few hundred atoms, with

most drug molecules containing fewer than 200 atoms [28]. In con-

trast, the number of molecules processed during a virtual screening

campaign can scale to the trillions [17]. Meanwhile, the number of

patterns to be searched is fixed and relatively small, reaching up to

a thousand only in specific fingerprinting tasks [31].

2.2 Problem Definition and Constraints
We use standard notation for graphs: a graph is a pair𝐺 = (𝑉𝐺 , 𝐸𝐺 )
of sets of nodes 𝑉𝐺 and edges 𝐸𝐺 where each edge connects a pair

of nodes, i.e., 𝐸𝐺 ⊆ 𝑉 × 𝑉 . By graph, we mean a simple, finite,

undirected, connected graph. The order and size of 𝐺 are denoted

by 𝑛 = |𝑉𝐺 | and𝑚 = |𝐸𝐺 |.
For a set of nodes 𝑋 ⊆ 𝑉𝐺 , we denote 𝐺 [𝑋 ] as the induced

subgraph of 𝐺 generated by 𝑋 , that is, the graph whose node set is

𝑋 and whose edge set consists of all the edges in 𝐸𝐺 that have both

endpoints in 𝑋 . Given two nodes 𝑢, 𝑣 ∈ 𝑉𝐺 , we denote 𝑑𝐺 (𝑢, 𝑣) as
the distance between 𝑢 and 𝑣 in 𝐺 . Moreover, for a node 𝑣 ∈ 𝑉𝐺 ,
we denote 𝑁𝐺 (𝑣) = {𝑢 ∈ 𝑉𝐺 | (𝑢, 𝑣) ∈ 𝐸𝐺 } as the neighborhood of

𝑣 and 𝑁𝑑
𝐺

= {𝑢 ∈ 𝑉𝐺 | 𝑢 ≠ 𝑣 ∧ 𝑑𝐺 (𝑢, 𝑣) ≤ 𝑑} as the neighborhood
of radius 𝑑 around 𝑣 . In the following, we omit the subscript 𝐺

whenever the graph is clear from the context.

In this paper, we deal with node-labeled graphs where a set

of labels L identifies some peculiarity of each node. Formally, a

node-labeled graph is a triple 𝐺 = (𝑉 , 𝐸, 𝐿) where (𝑉 , 𝐸) defines
the structure of the graph and 𝐿 : 𝑉 → L is a mapping from the

set of nodes 𝑉 to the set of labels L.

Definition 2.1. Let𝐺𝐷 = (𝑉𝐷 , 𝐸𝐷 , 𝐿𝐷 ) be a data graph and𝐺𝑄 =

(𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄 ) be a query graph. A subgraph 𝐻 = 𝐺𝐷 [𝑋 ] induced by
𝑋 ⊆ 𝑉𝐷 is isomorphic to 𝐺𝑄 if there exists a bijection 𝑓 : 𝑉𝑄 → 𝑋

such that:

(1) for each 𝑣 ∈ 𝑉𝑄 we have 𝐿𝑄 (𝑣) = 𝐿𝐷 (𝑓 (𝑣))
(2) if (𝑣,𝑢) ∈ 𝐸𝑄 then (𝑓 (𝑣), 𝑓 (𝑢)) ∈ 𝐸𝐻
The (1) indicates that the function 𝑓 must preserve labels, while

(2) ensures that all edges in the query graph are contained in the

subgraph of the target graph induced by 𝑋 .
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We will consider the following problem.

Node-Labeled Subgraph Matching (NLSM):

Input: A data graph 𝐺𝐷 = (𝑉𝐷 , 𝐸𝐷 , 𝐿𝐷 ) and a query

graph 𝐺𝑄 = (𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄 ).
Output:X = {𝑋 ⊆ 𝑉𝐷 | 𝐺𝐷 [𝑋 ] is isomorphic to 𝐺𝑄 }.

This formulation sets the basis for our domain-aware subgraph

matching strategies.

3 Molecular Matching Strategy
The NLSM problem is a fundamental problem with applications in

various domains, including molecular matching for drug discovery

where the graphs are characterized by:

• A limited label set, constrained by the chemical elements in

the periodic table;

• A low average degree (typically ≤ 4), reflecting atomic va-

lency constraints;

• High sparsity (≥ 95%) [14];

Our approach follows the filter-and-join strategy [52], consisting

of two main phases. In the filtering phase, the algorithm iteratively

refines the set of candidate nodes for each node in the query graph,

eliminating those that would lead to invalid results. Once filtering

is complete, the joining phase begins, where candidate nodes are

assembled into valid candidate chains, which are then combined

and validated to produce the final solutions.

Filter. The filtering operation (see Algorithm 1) uses the concept

of node signature, represented as an array of |L| integers, to evaluate
compatibility between nodes. Note that node labels represent the

intrinsic properties of graph nodes (e.g., atom type), whereas node

signatures are derived features that encode the distribution of labels

in their neighborhood.

The filtering process is conducted in multiple stages. At stage 𝑖 ,

the signature of a node 𝑣 is computed based on its neighborhood

within a radius of 𝑖 . As more stages are performed, additional can-

didates are filtered out, thereby simplifying the subsequent join

operations. The goal is to find a trade-off between the number of

stages and the number of resulting candidates.

Initially, the algorithm populates the set of candidates for each

query node with data nodes that share the same label. In the first

stage, it constructs a signature for each query and data node by

counting, for each label, the number of neighboring nodes with

that label.

To satisfy the conditions defined in Definition 2.1, the signature

of a data node 𝑢 must dominate the signature of the corresponding

query node. Specifically, for each label ℓ ∈ L, the data node 𝑢 must

have at least as many neighbors with label ℓ as indicated in the

query node’s signature.

Subsequent stages are similar to the first one, but the signatures

are computed over an increasingly extended neighborhood.

To build the signature of a node, we borrowed the idea of 𝑛–view
fromVSGM [25]. To identify the 𝑖-view of a particular node𝑢, which

corresponds to the neighborhood of radius 𝑖 around 𝑢, we calculate

the graph power 𝐺𝑖
, defined as the graph that connects nodes in 𝐺

if their distance is at most 𝑖 . This is achieved by performing 𝑖 BFS

steps starting from node 𝑢.

Algorithm 1 Filtering process pseudocode.

1: function Filter(𝐺𝑄 = (𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄 ),𝐺𝐷 = (𝑉𝐷 , 𝐸𝐷 , 𝐿𝐷 ))
2: 𝐶 ← InitializeCandidates(𝐺𝑄 ,𝐺𝐷 )
3: 𝑘 ← 1

4: repeat
5: 𝑆𝑄 ← GenerateSignatures(𝐺𝑄 , 𝑘)
6: 𝑆𝐷 ← GenerateSignatures(𝐺𝐷 , 𝑘)
7: 𝐶 ← RefineCandidates(𝐺𝑄 ,𝐺𝐷 , 𝑆𝑄 , 𝑆𝐷 ,𝐶)
8: 𝑘 ← 𝑘 + 1
9: until 𝑘 = 𝑠 where 𝑠 is the maximum amount of iterations

10: return 𝐶

11: kernel GenerateSignatures(𝐺 = (𝑉 , 𝐸, 𝐿), 𝑘)
12: ⊲ 𝑆 is the signatures matrix where 𝑆 (𝑣, 𝑙) denotes the number

of occurrences of nodes having label 𝑙 in the neighborhood of

radius 𝑘 around 𝑣

13: ⊲ 𝑅𝑘 (𝑣) is the number of nodes at distance 𝑘 from 𝑣

14: for all 𝑣 ∈ 𝑉 do ⊲ parallel for

15: 𝑅𝑘 (𝑣) ← 𝑁𝑘 (𝑣) \ 𝑁𝑘−1 (𝑣)
16: for all 𝑢 ∈ 𝑅𝑘 (𝑣) do
17: 𝑆 (𝑣, 𝐿(𝑢)) ← 𝑆 (𝑣, 𝐿(𝑢)) + 1
18: return 𝑆

19: kernel RefineCandidates(𝐺𝑄 ,𝐺𝐷 , 𝑆𝑄 , 𝑆𝐷 ,𝐶𝑝𝑟𝑒𝑣 )

20: for all 𝑣𝑞 ∈ 𝑉𝑄 do
21: 𝐶 (𝑣𝑞) = ∅
22: for all 𝑣𝑑 ∈ 𝑉𝐷 do ⊲ parallel for

23: for all 𝑣𝑞 ∈ 𝑉𝑄 do
24: if 𝑣𝑑 ∈ 𝐶𝑝𝑟𝑒𝑣 (𝑣𝑞) then
25: for all 𝑙 ∈ L do
26: if 𝑆𝑄 (𝑣𝑞, 𝑙) ≤ 𝑆𝐷 (𝑣𝑑 , 𝑙) then
27: 𝐶 (𝑣𝑞) ← 𝐶 (𝑣𝑞) ∪ {𝑣𝑑 }
28: return 𝐶

29: kernel InitializeCandidates(𝐺𝑄 ,𝐺𝐷 )

30: ⊲ 𝐶 is the candidate vector where 𝐶 (𝑣𝑞) is the set of
candidates for 𝑣𝑞 .

31: for all 𝑣𝑞 ∈ 𝑉𝑄 do
32: 𝐶 (𝑣𝑞) = ∅
33: for all 𝑣𝑑 ∈ 𝑉𝐷 do ⊲ parallel for

34: for all 𝑣𝑞 ∈ 𝑉𝑄 do
35: if 𝐿𝑄 (𝑣𝑞) = 𝐿𝐷 (𝑣𝑑 ) then
36: 𝐶 (𝑣𝑞) ← 𝐶 (𝑣𝑞) ∪ {𝑣𝑑 }
37: return 𝐶

The rationale behind this iterative approach is that the structural

mismatches between the query graph and the data graph may not

be immediately apparent at distance 1 but become evident when

considering larger neighborhood contexts. By iteratively increasing

the scope of the node’s view, the algorithm systematically eliminates

nodes that cannot be part of a valid mapping, reducing the search

space before the more computationally expensive join phase.

During each refinement step, filtering operations are applied

to further reduce the candidate set for each node. It is important

to note that the filtering performed at iteration 𝑖 must take into

account the candidate set from iteration 𝑖 − 1. Specifically, if a data
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Figure 2: Framework Overview. SIGMo’s pipeline includes six stages. It starts by converting input graphs into the CSR-GO ❶

format and initializing candidate sets ❷. The filtering phase then iteratively generates neighborhood-based signatures ❸ to
prunes candidates ❹. After filtering, query graphs are mapped to data graphs ❺, and the join phase identifies valid subgraph
matches ❻. Colored lines indicate inputs/outputs of each kernel throughout the pipeline.

node 𝑢𝑑 is not a valid candidate for a query node 𝑢𝑞 at iteration

𝑖 − 1, it cannot become a valid candidate at iteration 𝑖 .

To filter multiple query and data graphs, we join all query graphs

and all data graphs into two separate disconnected graphs.

Filter Complexity Analysis. To analyze the complexity of the filter
algorithm (Alg. 1), let us break it down into its core components.

The signature generation step performs a BFS starting from each

node in the graph, which in total takes 𝑂 (𝑛𝑑𝑚𝑑 ) time, where 𝑛𝑑
and𝑚𝑑 denote the number of nodes and edges in 𝐺𝐷 respectively.

The InitializeCandidates procedure takes𝑂 (𝑛𝑑𝑛𝑞) time. Then,

for each stage, the RefineCandidates procedure takes𝑂 (𝑛𝑑𝑛𝑞 |L|)
time. Hence, the overall complexity is𝑂 (𝑛𝑑𝑚𝑑 +𝑘𝑛𝑑𝑛𝑞 |L|). Assum-

ing that 𝑘 and |L| are constants, the total cost of the filter algorithm
is dominated by the time required to perform BFS traversals from

each node in the data graph.

Join. The joining phase uses a backtracking approach over the

pruned candidates to explore how they can be mapped to query

nodes while preserving the query topology. During this process,

edge labels are evaluated to prevent invalid matches.

4 SIGMo Implementation
In this section, we describe the implementation details of SIGMo.

An overview of the framework pipeline is presented in Figure 2.

SIGMo is implemented using SYCL [18], a single-source, cross-

platform abstraction layer that enables portable programming across

heterogeneous hardware architectures. In contrast to most exist-

ing GPU-accelerated subgraph isomorphism frameworks—typically

implemented in CUDA and thus limited to NVIDIA GPUs—SYCL al-

lows SIGMo to target a broader range of devices, including NVIDIA,

AMD, and Intel GPUs. This portability is particularly important

given current hardware trends: as of November 2024, 7 out of the

top 10 systems in the TOP500 list [50] are equipped with GPUs

from vendors other than NVIDIA.

Throughout this section, we adopt the SYCL platform and mem-

ory model terminology. A work-item corresponds to a single GPU

thread executing a kernel instance. A work-group is a one-, two-, or

three-dimensional collection of work-items, analogous to a CUDA

block. A sub-group represents a contiguous set of work-items that
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Figure 3: Illustration of the CSR-GO representation.

execute in Single Instruction Multiple Threads (SIMT) fashion; this

concept is equivalent to a CUDA warp or an AMD wavefront. In
terms of memory hierarchy, local memory refers to the shared (lo-
cal) memory accessible to all work-items within a work-group,

commonly used for low-latency communication and data reuse. In

contrast, private memory denotes memory that is exclusive to a

single work-item—analogous to thread-local storage.

4.1 CSR-GO Graph Representation
To represent both query and data graphs, we propose a data struc-

ture based on the classic Compressed Sparse Row (CSR) format [46],

extended with an additional layer we term graph offsets. This repre-
sentation, referred to as CSR-GO, is designed to handle disconnected

graphs without losing information about connected components.

Specifically, it introduces an auxiliary vector, graph offsets, whose

length equals the number of graphs plus one. Each entry in this

vector serves as a pointer mapping a segment of the row offsets

array to a specific graph, working analogously to how row offsets

map rows to adjacency lists. Figure 3 illustrates this representation.

Given a node ID, the corresponding graph can be efficiently

determined via a binary search over the graph offsets array. This

extension enables the storage and processing of multiple graphs

within a unified structure, without duplicating metadata or sacrific-

ing query performance. Moreover, it is particularly advantageous

during the join operation, as described in Section 4.6. In our design,

each work item is responsible for processing a single graph. As a

result, the relevant range in the row offsets array can be efficiently

retrieved by accessing only the graph offsets array.
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4.2 Signature Representation
SIGMo vertex signatures are implemented as masked bitsets. Specif-

ically, a 64-bit integer is partitioned into groups of bits, with each

group corresponding to a particular vertex label. The number of

supported labels is bounded by the set of elements in the periodic

table, with a focus on those commonly found in organic molecules.

However, element frequencies in organic compounds are highly

skewed [36]; for example, hydrogen (H) and carbon (C) occur far

more frequently than elements like silicon (Si).

To account for this imbalance, we apply a masking strategy that

allocates more bits to frequently occurring labels (e.g., H and C),

and fewer bits to rare ones (e.g., Si). This allows the signature to

represent label counts more accurately while staying within the

64-bit constraint.

In cases where the count of a label exceeds the maximum rep-

resentable value within its allocated bit group (i.e., overflow), the

group remains unchanged. Despite this saturation, the resulting

signature remains valid for filtering. This is because a data vertex

is considered a valid candidate if, for each label, the count encoded

in the query signature does not exceed that of the corresponding

data signature.

4.3 Candidates Representation
We represent the candidate set for each query node using a bitmap

structure to facilitate insertion and removal operations. Specifically,

we employ arrays of integers, where each bit set to 1 indicates a

valid candidate data node. These bitmaps are stored in GPUmemory

in a contiguous, row-major layout—each row corresponding to a

query node—to exploit coalesced memory access during filtering

[49]. This layout ensures that threads within a sub-group access

nearby memory locations, which helps optimize global memory

bandwidth. Figure 4 illustrates this coalescing pattern. On modern

GPUs, such access is considered coalesced, as long as the memory

region is compact and properly aligned.

Updating the bitmap requires atomic operations to safely modify

individual bits when multiple threads write concurrently. Con-

tention is naturally limited because each integer in the bitmap cov-

ers only a small group of contiguous data nodes, and each thread

is assigned to a single data node. As a result, atomic conflicts are

limited to adjacent threads within the same sub-group that may

access the same word. The granularity of the bitmap—determined

by the number of data nodes represented per integer—can be tuned

by adjusting the integer size. Aligning this granularity with the

hardware’s sub-group size can improve efficiency. However, if the

integer size matches the sub-group size exactly, the memory con-

troller may issue memory transactions containing only a single

integer, leading to reduced throughput.

The candidate bitmaps are themost memory-intensive data struc-

ture in our pipeline. At peak usage, they consume up to 1 GB of

GPU memory to represent 3,413 query nodes and 2,745,872 data

nodes.

4.4 Filtering Candidates
The filtering process is divided into multiple refinement iterations,

each separated by host-side synchronization. It consists of three
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Figure 4: Candidates representation.

distinct GPU kernels: query signature refinement, data signature
refinement, and candidates filtering.

The signature refinement kernels assign one work-item per node—

either in the query or data graph—and perform a BFS traversal

starting from the assigned node. The depth of the BFS is determined

by the current refinement iteration. To avoid restarting the BFS

from scratch in each iteration, we cache the frontier after every step

and reuse it as the starting point for the next iteration. Additionally,

we maintain the set of nodes reached in each iteration to compute

the difference from the previous step. This allows us to refine the

signature using only newly discovered nodes.

The candidate filtering kernel assigns a single work-item to each

data node as shown in Figure 4b. As discussed in the previous

section, performance can degrade when the bitmap granularity

aligns exactly with the hardware’s sub-group size, due to ineffi-

cient memory coalescing. To address this, each work-item within

a work-group prefetches the relevant bitmap integers into local

memory before the filtering phase begins. This ensures efficient and

coalesced access to memory across the entire work-group. During

filtering, each work-item iterates over all query nodes to check

whether its assigned data node is a valid candidate. For each query

node, the work-item also iterates over a fixed set of labels, eval-

uating whether they satisfy the candidate validity conditions. In

this filtering workload, increasing the work-group size can further

improve performance, as memory bandwidth remains the primary

bottleneck.

4.5 Mapping
Mapping is a crucial step to improve the performance of the join. In

this step, each data graph is mapped only to the query graphs that

are potential matches, discarding any query graph that contains

nodes with zero candidates in that data graph. To efficiently store

the mapping between data graphs and query graphs, we designed

a Graph Mapping Compressed Representation (GMCR), which con-

sists of two vectors: data graph offsets and query graph indices. The
data graph offsets behaves similarly to the row offsets in the CSR
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format, and stores the starting position of each data graph’s entries

in the query graph indices. The query graph indices contain the in-

dices of all query graphs that potentially match a given data graph.

In the GMCR, a boolean is designated for every query graph index

to signify if a match occurred between that query graph and the

respective data graph during the join phase.

The mapping phase consists of two kernels: the first kernel

performs a prefix sum to compute the total size of the query graph
indices vector, and to determine the offsets that populate the data
graph offsets vector. To maintain consistency, the data graph offsets
array is also updated on the host by performing an inclusive sum.

The host then allocates the query graph indices and the boolean

vectors, followed by the second kernel that populates the query
graph indices vector.

4.6 Joining Partial Matches
In our evaluation, we considered both Depth-First Search (DFS) and

Breadth-First Search (BFS) traversal strategies. While BFS generates

multiple partial matches at each level—leading to an exponential

increase in memory usage—DFS constructs only a single partial

match per step, enabling more efficient memory usage. Additionally,

DFS naturally aligns with backtracking approaches, as candidates

can be evaluated sequentially along the traversal path.

Given that the query and data graphs we process are relatively

small and exhibit tree-like structures—with treewidth not exceeding

2—both BFS andDFS produce comparable traversal orders. However,

we adopt DFS due to its compatibility with backtracking and its

superior memory efficiency.

To implement DFS-based backtracking in SIGMo, we account for

the fact that GPU architectures do not support recursive function

calls. Instead, we simulate recursion by maintaining an explicit

stack data structure in private memory [56]. The maximum depth

of this stack is bounded by the number of nodes in the query graph.

Since our queries are small (no more than 30 nodes), we allocate a

dedicated stack for each GPU work-item, allowing it to explore the

search space without memory spillage.

In our execution model, each data graph is assigned to a work-

group. The work-items within that group iterate over all valid query

graphs, with each thread handling one query at a time. This thread-

level parallelism is feasible because both the data and query graphs

are small. By constraining the candidate set to only include nodes

from the current data graph, each work-item can efficiently explore

the full candidate space for a query without exceeding the available

resources.

In contrast to the filter phase, which benefits from a larger work-

group size to efficiently parse all candidates, the join phase performs

better with a smaller work-group size, as the number of matching

query graphs per data graph can vary significantly, leading to an

under utilization of the GPU resources for large work-group sizes.

Although this approach may appear naive at first glance, we

argue that it offers an effective balance between computational

complexity and GPU resource management. Within the specific

context of molecular graph matching—characterized by small graph

sizes and low treewidth—this method achieves strong practical

performance under real-world constraints.

5 Experimental Evaluation
We tested our approach on a dataset specifically designed to bench-

mark substructure searching algorithms in molecular graphs [16],

from which we deleted single-atom patterns, resulting in 618 query

graphs and 114,901 data graphs. This dataset was sourced from the

ZINC database [24], which is currently the best source of commer-

cially available molecular structures. We also used the whole ZINC

dataset to assess the scalability of our framework.

The experiments were carried out on a system with dual Intel

Xeon Gold 5218 CPUs, 192GB RAM, and an NVIDIA V100S GPU

with 32GB VRAM. We compiled SIGMo with oneAPI v2024.2.0 [23]

compiler and CUDA v555.42 drivers.
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Figure 5: Summary of the distribution of candidate set sizes
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bution of the candidates set sizes for each node and aligns
with the left axis, whereas the line indicates the total number
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Figure 7: Total execution time of SIGMo across refinement iterations, grouped by query graph diameter.

5.1 Assessing SIGMo
In this section, we evaluate the performance of SIGMo. It is impor-

tant to clarify that when we refer to refinement iteration 𝑖 , it means

that each node has visibility over its neighbors up to distance 𝑖 − 1.
For instance, refinement iteration 1 implies that each node is only

aware of its own label, with no neighborhood context.

5.1.1 Candidate Sets Pruning. Each refinement iteration begins

with the signature refinement of both query and data graph nodes.

While some node signatures converge earlier than others, the over-

head of continuing to refine already-converged nodes is negligible

relative to the overall computational cost. In practice, the total time

required to perform signature refinement across all query and data

nodes does not exceed 10 milliseconds, even in the largest datasets.

Figure 5 illustrates the distribution of the candidate set sizes

across query nodes (represented as box plots) and the total number

of candidates (shown as a line). A significant reduction in can-

didate sets is observed after the first iteration, highlighting the

effectiveness of early pruning. Beginning around iteration 6, the

total number of candidates plateaus, indicating that most query

graphs have reached convergence and no longer benefit from fur-

ther refinement.

Despite this convergence, outliers persist across iterations, partic-

ularly in the earlier stages. These outliers are attributed to query pat-

terns that correspond to frequent molecular substructures, which

are more likely to occur across a wide range of molecules, and thus

resist pruning. As shown in Figure 5, these outliers do reduce their

candidate sets in later iterations—when they gain a broader view of

their neighborhood—but they still retain a relatively large number

of candidates compared to the rest.

5.1.2 Filter vs. Join. Figure 6 presents a comparison between the

execution times of the filter and join phases across different refine-

ment iteration counts. The results reveal a turning point: beyond

a certain number of refinement iterations, the cost of additional

filtering outweighs the performance gains achieved during the join

phase. In other words, excessive refinement may reduce the can-

didate set further, but at the expense of increased overhead that

negates the benefits in subsequent stages.

This observation is supported by Figure 5, which shows that

the total number of candidates begins to plateau after iteration 6.

Beyond this point, only a marginal number of additional candidates

are eliminated, offering decreasing returns in terms of join phase

speedup, hence resulting in a higher overall runtime.

It is important to note that this optimal refinement depth may

vary depending on the diameter of the query graphs. Datasets

containing query graphs with larger diameters may require more

iterations before convergence is reached, as a broader neighbor-

hood view becomes necessary to effectively prune candidates. To

investigate this, we grouped the query graphs based on their di-

ameters and balanced the groups to contain the same number of

graphs. Figure 7 illustrates the total execution time of SIGMo for

these grouped query graphs. As the diameter increases, we observe

that the execution time curves shift to the right, indicating that

the best number of refinement iterations occurs later. This indi-

cates that graphs with larger diameters require more refinement

steps. Anomalies appear in the cases with diameters 8, 10, 11, and

12, where the execution exhibits irregular behavior. These query

graphs did not produce matches because in each case at least one

node had zero candidates from the first iteration. This led to null

join operations, as the mapping phase failed to associate any query

graph with a corresponding data graph. A similar behavior is ob-

served in the group of query graphs with a diameter of 9, where

the GMCR determines that no matches are possible only starting

from the second iteration.

5.1.3 Resources Utilization. On the evaluated dataset comprising

618 query graphs and 114,901 data graphs—for a total of 3,413 query

nodes and 2,745,872 data nodes—SIGMo occupies approximately

1 GB of memory. In particular, 80% of the memory footprint is

attributed to the bitset-based representation of the candidate sets.

The candidate size can be determined in advance by considering

|𝑉𝑄 | × |𝑉𝐷 |/8 bytes. The data graphs account for approximately

64 MB of memory usage, while the query graphs require only 90 KB,

both represented in the CSR-GO format. Additionally, the signature

representations for both query and data nodes collectively consume

around 128 MB.

Figure 8 shows the percentage of GPU occupancy during SIGMo

execution in six refinement iterations, profiled through NVIDIA

DCGM which defines GPU occupancy as the fraction of resident
warps on a multiprocessor, relative to the maximum number of con-
current warps supported on a multiprocessor [34]. The test was per-
formed on an NVIDIA V100S GPU. The results reveal that the

filtering phase reaches peak GPU utilization. The observed drops
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Figure 8: Profiling of the NVIDIA V100S GPU occupancy
during the SIGMo runtime with six refinement iterations.

10 2 10 1 100 101 102 103

Instruction Intensity (Instr/Byte)

101

102

103

In
st

ru
ct

io
n 

Th
ro

ug
hp

ut
(G

In
st

r/s
)

HBM Roof
L2 Roof
L1 Roof
Compute Roof
Filter
Mapping
Join

Figure 9: Instruction Roofline of SIGMo execution with six
refinement iterations on NVIDIA V100S.

in occupancy are primarily attributed to host-side synchroniza-

tion overhead, as is evident by the presence of six distinct peaks

corresponding to the filter phase. The mapping phase is relatively

brief, lasting approximately 50 milliseconds. This short duration

contributes to the observed GPU occupancy, which ranges between

47% and 55%. In contrast, the join phase exhibits a more stable oc-

cupancy of around 48%, mainly due to memory bottlenecks arising

from the irregular access patterns required to read the query and

data graphs. This behavior is evident in Figure 9, which presents the

Instruction Roofline Model (IRM) [12]—a more suitable tool for our

use case compared to the standard Roofline Model [29]. The first

filter kernel considers the neighborhood at distance 0, which means

that only the label is evaluated, motivating the low instruction

intensity.

The underutilization of the join phase observed in Figure 8 is

mainly attributable to warp-level divergence: different threads pro-

cess query graphs of varying size and complexity, which leads to

heterogeneous control paths and reduced occupancy. While alterna-

tive designs such as assigning one query per sub-group can reduce

divergence, they also lower parallelism and increase memory con-

tention, resulting in an increased overall execution time.
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Figure 10: Comparison of SIGMo with other CPU and GPU
state-of-the-art subgraph isomorphism frameworks.

5.2 State-of-the-Art Comparison
We evaluated our framework against three leading frameworks,

namely VF3 [7], GSI [61], and cuTS [58]. nvcc v12.3 compiled GSI

and cuTS, while VF3 was compiled using g++ 11.4.0.
In all the experiments we did not consider the time to allocate

and initialize data structures. To run the experiments on VF3, GSI,

and cuTS, we merged the data graphs into a single disconnected

graph and tested queries individually. VF3 appears to be a better

solution for matching several queries on a large set of data graphs

compared to GSI and cuTS. In addition, GSI ran out of memory

on the largest query graphs (on graphs with more than 20 nodes).

Figure 10a shows the comparison of the execution time to find

matches. Both SIGMo and VF3 support the early stopping when

finding a match between a query graph and a data graph, while

GSI and cuTS do not. We achieve a speedup of 33.6× compared to

VF3, 1470.4× compared to GSI, and 88× compared to cuTS.

Figure 10b shows the throughput, defined as the number of

matches per second. To calculate the throughput, we considered

for both SIGMo and VF3 the time required to find all the matches.

The cuTS framework does not support labels, leading to a higher

number of matches for a single query graph.

In summary, the performance difference is mainly attributed to

SIGMo’s design: unlike previous frameworks optimized for par-

allelism on a single large graph, SIGMo targets high-throughput

execution on batches of labeled sparse graphs. Its iterative filtering

prunes the candidate space, CSR-GO and GMCR ensure memory-

efficient storage and mapping, and the stack-based DFS join enables

thread-local backtracking—together accounting for the large per-

formance gains in Figure 10.

5.3 Performance Portability
Assessing performance portability is inherently challenging, partic-

ularly when evaluating a novel solution like SIGMo that has no di-

rect counterpart or baseline [37]. In this section, we provide insights

into how SIGMo performs across different hardware platforms. We

evaluated SIGMo on three different systems, each equipped with

a different GPU architecture: an NVIDIA V100S, an AMD MI100,

and an Intel Max 1100. Compilation was performed using oneAPI

v2024.2 across all platforms to ensure consistency.
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Table 1: SIGMo configuration on three hardware platforms.

GPU Candidates

bitmap integer

Filter

Work-group

size

Join

Work-group

size

NVIDIA V100S 32 bit 1024 128

AMD MI100 64 bit 512 64

Intel Max 1100 32 bit 512 32

Figure 11 presents the execution time across two main com-

putation phases—filter and join—and the overall execution time

for multiple refinement iterations, while Table 1 reports the best

configuration parameters for SIGMo identified through manual

tuning.

Among the evaluated platforms, the AMD MI100 consistently

delivers the fastest execution times, reaching a minimum of 1.70

seconds at five refinement iterations, compared to 2.12 seconds

for the NVIDIA V100S at six iterations and 2.65 seconds for the

Intel Max 1100 at two iterations. In contrast, the Intel Max 1100

exhibits the highest total runtimes, driven primarily by the elevated

cost of the Filter phase. On this device, the overhead of additional

refinement iterations outweighs the benefits of further candidate

reduction, making extra iterations less advantageous.

To better contextualize performance variations, we break down

the computation into its twomain phases: Filter and Join. All metrics

discussed below were obtained using VTune (Intel), Nsight Compute
(NVIDIA), and Rocprof (AMD). The Filter phase is more compute-

intensive with a low memory footprint (<1.2GB). This puts more

pressure on the compute units rather than memory. In this setting,

architectural differences naturally emerge: the Intel GPU offers sig-

nificantly lower peak compute performance (22 TFLOPS) compared

to AMD MI100 (180 TFLOPS) and NVIDIA V100S (130 TFLOPS).

Despite this difference, all GPUs achieve over 93% of their sustained

peak compute throughput during the Filter phase with two refine-

ment iterations. With a single refinement iteration, the Filter phase

becomes memory-bound, as shown in the Roofline plot (Figure 9).

In this case, Intel’s higher memory bandwidth enables it to outper-

form the other devices. The Join phase initially incurs substantial

memory traffic ( 16 GB) due to the large number of candidates

stored in the GMCR. This results in memory-dominated behavior

during the first iteration, again favoring the Intel Max GPU. As

candidates are pruned, memory access becomes more selective, and

the workload shifts toward compute. Notably, L2 cache hit rates

exceed 90% across all GPUs and iterations while occupancy remains

around 50%. Additionally, during the Join phase with a single refine-

ment iteration–when each query graph retains many candidates–

AMD shows the highest sensitivity to control-flow divergence, due

to its larger wavefront size (64 threads vs. 32 for NVIDIA and 16

for Intel). The wider execution group increases the chance of di-

vergence within a wavefront, reducing execution efficiency. This

effect is no longer observed with additional refinement iterations.

Overall, hardware profiling reveals consistent behavior across all

platforms starting from the second refinement iteration, indicating

that observed performance differences reflect inherent hardware

capabilities.
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The relatively small performance gap between the three architec-

tures provides additional evidence of the efficiency and portability

of our approach, demonstrating that SIGMo can achieve competitive

performance even on diverse hardware.

5.4 Scalability Evaluation
We evaluated the weak scaling of SIGMo on single and multiple

GPUs.

5.4.1 Single GPU Scalability. We evaluated the scalability of our

framework on a single GPU. Figure 12 illustrates how SIGMo per-

formance scales as the number of data graphs increases up to the

maximum available memory of the GPU, while the number of
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Figure 13: Execution of SIGMo on a multi-node environment
with up to 256 NVIDIA A100 GPUs.

query graphs remains constant. Overall, the framework demon-

strates good scalability with input size, exhibiting sublinear growth

in execution time. This trend is especially clear in the Find First exe-
cution. In contrast, the Find All execution displays more variability

and more pronounced increases in runtime at higher scale factors.

However, this is acceptable because we assign a different data graph

to each work-group. As a result, when all available compute units

are saturated, SYCL schedules these executions into multiple join

kernels. This explains the overhead observed, for example, when

increasing the scale factor from 16 to 17.

5.4.2 Multi Node Scalability. We evaluated the performance of

SIGMo on an HPC cluster, where each node is equipped with

four NVIDIA A100 GPUs. The experiments were carried out using

molecules extracted from the ZINC dataset [48], along with a fixed

set of 389 queries. For inter-node communication, we used Intel MPI

v2021.11. Figure 13 reports the median results of five executions

performed with 16, 32, 64, 128, and 256 GPUs, each running six

refinement iterations. The plot demonstrates that our framework

scales efficiently across the cluster, exhibiting linear performance

gains in log-log space as the number of nodes increases.

We used static partitioning on the ZINC dataset, assigning 500,000

molecules to each GPU. Consequently, increasing the number of

nodes led to a proportional increase in the total number ofmolecules

processed from the dataset. Figure 14 illustrates the runtime of each

MPI process, where each process is mapped to a single GPU in

the 256-GPU configuration. Due to the static partitioning strategy,

variations in execution time are observed due to the different num-

ber of candidates produced, reflecting differences in the molecular

workloads assigned to each process [43]. Although more adaptive

load-balancing approaches have been shown to improve scalabil-

ity [27], the observed runtime variability remains low, with a coef-

ficient of variation of only 4% in the Find First execution and 8% in

the Find All execution.
At peak scale, SIGMo successfully processed up to 128 million

molecules in about 17 seconds, producing 129,575 billion total

matches in the Find All execution and achieving a peak throughput

of up to 7.7 billion matches per second.
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Figure 14: Runtime of each MPI process on 256 GPUs.

6 Related Work
Subgraph isomorphism is a well-known NP-complete problem with

extensive research across CPU and GPU platforms. The early foun-

dational work by Ullmann [52] laid the theoretical foundations,

introducing a backtracking algorithm with pruning strategies. This

was followed by more advanced techniques such as VF2 [11], and

its successors VF2Plus[8] and VF3 [7], which introduced more ad-

vanced state-space search techniques with improved performance

on biological graphs [16], making them widely used on CPU ar-

chitectures. Several CPU-based subgraph isomorphism algorithms

have shown strong performance across various benchmarks. RI

and its extension RI-DS [6] use recursive search and degree se-

quence filtering to efficiently prune the candidate space, particu-

larly in sparse graphs. The Glasgow Subgraph Solver [32] applies

constraint programming techniques combined with bitset-based

data structures. TurboISO [21] introduces a neighborhood label fre-

quency index and region exploration for fast matching over large

graphs. QuickSI [44] focuses on minimizing verification time using

a heuristic-driven matching order, making it one of the first scal-

able solutions for labeled graphs. These frameworks, while highly

optimized for single-query execution, are not designed for large

batched molecular matching, which is the primary focus of SIGMo.

Although CPU-based algorithms remain effective, they struggle

to scale to high-throughput workloads. This has led to increased

interest in GPU-based frameworks that exploit massive parallelism.

Among these, cuTS [58], GSI [61], PARSEC [13], and STMatch [56]

are notable. CuTS uses a trie-based structure and performs well in

distributed multi-GPU environments, Parsec accelerates subgraph

enumeration using parallel traversal and candidate expansion strate-

gies, while STMatch accelerates subgraph matching on GPUs using

stack-based loop optimizations to replace recursive DFS, reducing

divergence and improving efficiency for individual pattern matches.

These frameworks lack support for labeled graphs, which limits

their utility in molecular domains, where labels represent meaning-

ful constraints formatching. GSI and its scalable extension SGSI [60]

leverage parallelism on GPU architectures, but suffer from high

memory overhead, especially when processing large query graphs.

DGSM [20] also implements GPU-accelerated subgraph matching

using depth-first search strategies using a backtracking unrolling

strategy. However, it does not target specific constraints of batched

molecular matching, and their scalability is often limited to smaller

datasets or single query workloads. Our method draws inspiration

from VSGM [25], which introduces a view-based approach to filter
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Table 2: Comparison against the state of the art.

Domain-

specific

GPU

Offload

Batched

Matching

Exact

Matching

O’Boyle et al. [35] ✓ ✗ ✗ ✗

Carletti et al [7] ✗ ✗ ✗ ✓

Xiang et al. [58] ✗ CUDA ✗ ✓

Zeng et al. [60, 61] ✗ CUDA ✗ ✓

Our work ✓ Heterog.
1 ✓ ✓

candidate nodes by examining multi-hop neighborhoods. Although

VSGM achieves strong filtering efficiency, it operates on single

query-data graph pairs and does not address batching or memory

optimization for large-scale molecular datasets. SIGMo builds upon

this idea by introducing iterative signature refinement [40], allow-

ing highly selective filtering that reduces the search space before the

join phase. This is especially critical for molecular matching, where

node labels and neighborhood context carry significant meaning.

Various techniques for molecular matching circumvent the need

for subgraph isomorphism, opting instead for fingerprint-based

algorithms [40], canonical SMARTS/SMILES evaluation [35], and

molecular embeddings learned through graph neural networks

(GNNs) [41, 55, 59]. Despite their efficiency, these methods are

inherently approximate and can produce not only false positives,

but also false negatives—potentially missing relevant molecular

matches.

Table 2 summarizes the contributions of SIGMo in relation to

some of the state-of-the-art frameworks. In contrast to these works,
SIGMo is the first portable high-performance subgraph isomorphism
GPU framework for molecular matching, designed to query a large
dataset of molecules simultaneously in a batched fashion.

7 Conclusion
In this study, we presented SIGMo, the first portable and high-
throughput GPU subgraph isomorphism framework tailored for

the molecular matching problem, which exploits GPU parallelism

to match multiple queries on multiple data graphs simultaneously.

We also proposed a novel filter strategy that is designed to prune

candidates in labeled graphs through inspection of neighborhood

constraints. Although we focused on molecular matching, the fil-

ter strategy is broadly applicable to labeled sparse graphs and can

also be applied in domains such as malware detection and graph

database queries, reinforcing its relevance beyond this specific ap-

plication.

Experimental results show that SIGMo significantly outperforms

the current state-of-the-art GPU solution, achieving speedups of

up to 1470.4× and surpassing the leading CPU-based solution by

up to 33.6×. Furthermore, SIGMo demonstrates excellent scalabil-

ity, reaching a peak throughput of 7.7 billion matches per second

on a cluster equipped with 256 GPUs. As a next step, we plan to

extend SIGMo to support wildcard atoms and bonds, which are

used in cheminformatics to express flexible or partially specified

substructures.

1
Heterog. refers to support for heterogeneous backends such as CUDA, HIP, LevelZero,

and OpenCL.
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