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Introduction – Graph Analytics and GPUs

4

• Many real-world applications are naturally 
modeled as graphs 

‣ Social networks (e.g., friend/follow graphs) 

‣ Web and hyperlinks (e.g., crawling, ranking) 

‣ and more … 

• These graphs are huge: millions of nodes, 
billions of edges 

• GPUs offer thousands of cores that can 
process nodes and edges in parallel
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Introduction – Why are Graphs Challenging on GPUs?

5

• GPUs struggle to handle irregular workloads such as graph traversal due to: 

‣ Skewed degree distribution 

‣ Irregular topology 

‣ Memory-boundness 1 2 /
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Background – Graph Algorithms as Iterative Converging Processes

• Most graph algorithms are iterative; 

• They progress step-by-step until a convergence condition is met. 

• An example: Breadth First Search (BFS)

6

Extract a node from 
the queue

Insert 
source node into 

the queue

All 
neighbors 
visited?

Push it into the 
queue

Queue is 
empty? Converged

Inspect next neighbor
Has 

been visited?

Yes

No

Yes

No

Yes

No

BFS Step

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11



Background – Frontier-Based Processing

• In parallel graph algorithms, a Frontier is 
the set of active nodes during an iteration 

• Example: in BFS, it holds nodes at 
current distance level 

• Algorithms proceed in supersteps: 

1. Expand frontier 

2. Apply logic 

3. Prepare next iteration
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Background – Frontier Representation

8

• Vector-based frontier: 

‣ Each entry represents a node in the 
frontier 

• Bitmap-based frontier: 

‣ Each bit  represents whether the 
vertex  is in the frontier
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Background – Bitmap Frontier vs. Vector Frontier

9

• Bitmap has no duplicated nodes for 
advance operations 

‣ Which means no search after the 
advance operation 

• Less space for scale-free graphs!
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Background – SOTA GPU Graph Frameworks
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AMD Intel NVIDIA
CUDALevelZeroROCm Medusa
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cuGraph
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5/10 Supercomputers in 
TOP10 has AMD or Intel  

GPUs!
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Contributions

12

A load-balanced execution model for graph traversal2.

SYgraph, the first portable, heterogeneous graph 
analytics GPU framework based on SYCL and C++201.

A novel memory-efficient Two-Layer Bitmap Frontier3.
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SYgraph API
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SYgraph API — Primitives

14

• SYgraph provides fundamental 
building blocks called primitives 

• There are three core primitives: 

‣ Advance (Edge Operation) 

‣ Compute (Vertex Operation) 

‣ Filter 

• Each primitive uses a user-defined 
lambda function that enables the 
data-driven behavior
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SYgraph API — An Example of BFS
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 1. using namespace sygraph; 
 2. void BFS(Graph& G, int* dist, vertex_t src){ 
 3. auto in_frontier  = makeFrontier(G) 
 4. auto out_frontier = makeFrontier(G) 
 5. in_frontier.insert(src) 
 6. size_t size = G.getVertexCount() 
 7. int iter = 0 
 8. while (!in_frontier.empty()) { 
 9. operators::advance::frontier(G, in_frontier, out_frontier,  
10.   [=](vertex_t u, vertex_t v, edge_t e, weight_t w) {  
11.     bool visited = dist[v] < (size + 1)  
12.     return !visited                      
13.   }).wait() 
14. operators::compute::execute(G, out_frontier,  
15.   [=](vertex_t v) {  
16.     dist[v] = iter + 1                   
17.   }).wait() 
18. frontier::swap(in_frontier, out_frontier) 
19. out_frontier.clear() 
20. iter++ 
21. }}
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• SYgraph API Components: 

‣ Primitives: apply user-defined logic 

‣ Frontier: handles dynamic sets of active 
elements 

‣ Graph: common graph operations 

‣ I/O: manages read/write operations of 
graphs 

• In yellow the code executed on the GPU 

• Each lambda captures the pointer to data 
structures allocated by the host, such as the 
dist array



Execution Model
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Execution Model

17
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• SYgraph uses a bitmap-based frontier 
representation



Execution Model – Subgroup Workload during Advance

1. Initially, each thread is assigned to a 
single bit (i.e. vertex) 

2. With a sub-group scan operation, the 
threads compact the active vertices 
into local memory 

3. The threads then begin processing the 
neighborhood of each active vertex in a 
cooperative fashion 

4. This process ends when all the active 
vertices in the current Integer are 
visited
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Execution Model – Cooperative Processing

19

• Each thread is assigned to a different 
neighbor of a specific active vertex 

• During this step, each thread applies 
the user-defined lambda to determine 
if the neighbor should be added to the 
output frontier 

• Access to the neighborhood occurs in a 
coalesced fashion 

• This process concludes when all 
neighbors have been evaluated
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Bitmap Frontier

• What happens if only one bit is set to 1 for each Integer?
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• Adjust the bitmap Integer size to match the subgroup size 

• All threads within a sub-group will stay active during the neighborhood processing
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• Apply a coarsening factor to improve GPU resource usage 

• Each work-group will be assigned to multiple bitmap Integers
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Two-Layer 
Bitmap
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• What happens when an Integer is 0?
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• Do not assign a work-group to that Integer. How?

25

Bitmap Frontier – Another solution
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Two-Layer Bitmap
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T0

0 1 3 Offsets 
Buffer

• The second layer marks which Integers in the 
first layer are non-zero 

• Before load-balancing, each thread scans 
different Integers of the second layer 

• Generates a buffer of offsets that guide kernel 
execution on active regions

Skip 
offset 2



Experimental 
Evaluation
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Experimental Evaluation — Methodology
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# Nodes # Edges• We compared SYgraph against: 

‣ Gunrock 

‣ Tigr 

‣ SEP-Graph 

• Experiments against state-of-the-art 
were conducted on a NVIDIA V100S 

• High-diameter and Scale-free graphs: 

‣ From 2 to 24 Millions nodes 

‣ From 2,1 to 530 Millions edges



Experimental Evaluation — Performance vs. SOTA Frameworks
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Experimental Evaluation — Performance vs. SOTA Frameworks
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Experimental Evaluation — Memory Footprint vs. SOTA Frameworks

• Memory Footprint expressed in Kilobytes (KB).

31
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Note: Insets bar-plots show total memory usage per framework, following legend order.
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Experimental Evaluation — Comparison on Different Hardware

• Intel MAX 1100 performs well 
on sparse workloads and sparse 
graphs with LevelZero backend 

• LevelZero backend yields 
superior performance compared 
to OpenCL backend. 

• AMD MI100 excels on dense 
workloads 

• NVIDA V100S shows overall 
strong performance
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Conclusion
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Conclusion

• SYgraph Summary 

‣ A portable graph analytics framework 

‣ Introduces a Two-Layer Bitmap frontier layout 

‣ A load balancing mechanism tailored on top of 
the bitmap 

• Key Results 

‣ Up to faster than Gunrock, over 
Tigr, over SEP-Graph 

‣ Low memory footprint, no need for 
preprocessing 

‣ Demonstrates performance portability 

• Future Work 

‣ Support for multi-GPU and multi-node 
execution 

‣ Exploring asynchronous and dynamic graph 
capabilities 

‣ Auto-tuning mechanism across architectures 

‣ Integration to oneAPI Data Parallel Library 
(oneDAL)3.5 × 7.5 ×

2.3 ×
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