
Proceedings of 54th International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

SYgraph

A Portable Heterogeneous Graph Analytics Framework for GPUs

Antonio De Caro, Gennaro Cordasco, Biagio Cosenza
{antdecaro, gcordasco, bcosenza}@unisa.it  

https://www.adecaro.eu github.com/unisa-hpc/SYgraph

University of Salerno • Department of Computer Science • Fisciano, Italy

https://www.adecaro.eu

Outline

• Introduction & Background

• Contributions

‣ SYgraph API

‣ Execution Model

‣ Two-Layer Bitmap

• Experimental Evaluation

• Conclusion

2International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Introduction &
Background

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Introduction – Graph Analytics and GPUs

4

• Many real-world applications are naturally
modeled as graphs

‣ Social networks (e.g., friend/follow graphs)

‣ Web and hyperlinks (e.g., crawling, ranking)

‣ and more …

• These graphs are huge: millions of nodes,
billions of edges

• GPUs offer thousands of cores that can
process nodes and edges in parallel

0

1

3

2

5

4

6

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Introduction – Why are Graphs Challenging on GPUs?

5

• GPUs struggle to handle irregular workloads such as graph traversal due to:

‣ Skewed degree distribution

‣ Irregular topology

‣ Memory-boundness 1 2 /

0 3 /

0 3 /

1 2 4 5 /

3 /

2 3 /

0
1
2
3
4
5

0

1

2

3

4

5

G
PU

Adjacency ListThread ID

0

1

3

2 5

4

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Background – Graph Algorithms as Iterative Converging Processes

• Most graph algorithms are iterative;

• They progress step-by-step until a convergence condition is met.

• An example: Breadth First Search (BFS)

6

Extract a node from
the queue

Insert
source node into

the queue

All
neighbors
visited?

Push it into the
queue

Queue is
empty? Converged

Inspect next neighbor
Has

been visited?

Yes

No

Yes

No

Yes

No

BFS Step

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Background – Frontier-Based Processing

• In parallel graph algorithms, a Frontier is
the set of active nodes during an iteration

• Example: in BFS, it holds nodes at
current distance level

• Algorithms proceed in supersteps:

1. Expand frontier

2. Apply logic

3. Prepare next iteration

7

0

1

3

2 5

4

0

1

3

2 5

4

0

1

3

2 5

4

Step 1

Step 2

Step 3

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Background – Frontier Representation

8

• Vector-based frontier:

‣ Each entry represents a node in the
frontier

• Bitmap-based frontier:

‣ Each bit represents whether the
vertex is in the frontier

i
i

0

1

3

2 5

4

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Bitmap Frontier

0 1 2 3 4 5 6 7
0 1 1 0 1 0 0 0

First Integer (4 bits) Second Integer (4 bits)

Vector Frontier

1 2 4

Integer

Background – Bitmap Frontier vs. Vector Frontier

9

• Bitmap has no duplicated nodes for
advance operations

‣ Which means no search after the
advance operation

• Less space for scale-free graphs!

0

1

3

2 5

4

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Bitmap Frontier

0 1 2 3 4 5 6 7
0 0 1 1 1 0 0 0

First Integer (4 bits) Second Integer (4 bits)

Vector Frontier

2 3 3 4

Integer

Background – SOTA GPU Graph Frameworks

10

AMD Intel NVIDIA
CUDALevelZeroROCm Medusa

Gunrock

cuGraph
Tigr

graphBLAST

SEP-Graph

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

5/10 Supercomputers in
TOP10 has AMD or Intel  

GPUs!

Contributions

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Contributions

12

A load-balanced execution model for graph traversal2.

SYgraph, the first portable, heterogeneous graph
analytics GPU framework based on SYCL and C++201.

A novel memory-efficient Two-Layer Bitmap Frontier3.

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

SYgraph API

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

SYgraph API — Primitives

14

• SYgraph provides fundamental
building blocks called primitives

• There are three core primitives:

‣ Advance (Edge Operation)

‣ Compute (Vertex Operation)

‣ Filter

• Each primitive uses a user-defined
lambda function that enables the
data-driven behavior

In-Frontier

Out-Frontier

Advance

In-Frontier

Out-Frontier

Filter

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Functor

Compute

In-Frontier

SYgraph API — An Example of BFS

15

 1. using namespace sygraph;
 2. void BFS(Graph& G, int* dist, vertex_t src){
 3. auto in_frontier = makeFrontier(G)
 4. auto out_frontier = makeFrontier(G)
 5. in_frontier.insert(src)
 6. size_t size = G.getVertexCount()
 7. int iter = 0
 8. while (!in_frontier.empty()) {
 9. operators::advance::frontier(G, in_frontier, out_frontier,
10. [=](vertex_t u, vertex_t v, edge_t e, weight_t w) {
11. bool visited = dist[v] < (size + 1)
12. return !visited
13. }).wait()
14. operators::compute::execute(G, out_frontier,
15. [=](vertex_t v) {
16. dist[v] = iter + 1
17. }).wait()
18. frontier::swap(in_frontier, out_frontier)
19. out_frontier.clear()
20. iter++
21. }}

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

• SYgraph API Components:

‣ Primitives: apply user-defined logic

‣ Frontier: handles dynamic sets of active
elements

‣ Graph: common graph operations

‣ I/O: manages read/write operations of
graphs

• In yellow the code executed on the GPU

• Each lambda captures the pointer to data
structures allocated by the host, such as the
dist array

Execution Model

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Execution Model

17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1

WG0 WG1 WG2 WG3

SG00 SG01 SG10 SG11 SG20 SG21 SG30 SG31

Threads

- Work-group (): like CUDA Block

- Sub-group (): like CUDA Warp

WG
SG

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

• SYgraph uses a bitmap-based frontier
representation

Execution Model – Subgroup Workload during Advance

1. Initially, each thread is assigned to a
single bit (i.e. vertex)

2. With a sub-group scan operation, the
threads compact the active vertices
into local memory

3. The threads then begin processing the
neighborhood of each active vertex in a
cooperative fashion

4. This process ends when all the active
vertices in the current Integer are
visited

18

2 Cooperatively
Process

SGXY

Threads

1

Compact
1 0 1 … 1

0 1 2 … 31

v0 v1 v31

Bitmap

v2
v0 … v31v2

Local Memory

0 1 … 31

…v0 v31v2
Local Memory

0 1 … 31

…v0 v31v2
Local Memory

…v0 v31

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Execution Model – Cooperative Processing

19

• Each thread is assigned to a different
neighbor of a specific active vertex

• During this step, each thread applies
the user-defined lambda to determine
if the neighbor should be added to the
output frontier

• Access to the neighborhood occurs in a
coalesced fashion

• This process concludes when all
neighbors have been evaluated

0
1
…
31

u1
. . .
u31
u32
u33

u63

u0

. . .

ThreadsNeighbors

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Bitmap Frontier

• What happens if only one bit is set to 1 for each Integer?

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

WG0 WG1 WG2 WG3

SG00 SG01 SG10 SG11 SG20 SG21 SG30 SG31

– A problem

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

• Adjust the bitmap Integer size to match the subgroup size

• All threads within a sub-group will stay active during the neighborhood processing

21

WG0 WG1 WG2 WG3

SG00 SG10 SG20 SG30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

Bitmap Frontier – A solution

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

• Apply a coarsening factor to improve GPU resource usage

• Each work-group will be assigned to multiple bitmap Integers

22

WG0 WG1

SG00 SG10 SG20 SG30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

Bitmap Frontier – A solution

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Two-Layer
Bitmap

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

• What happens when an Integer is 0?

24

WG2 WG3

SG20 SG21 SG30 SG31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1

WG0 WG1

SG00 SG01 SG10 SG11

Wasted GPU Resources

Bitmap Frontier – Another problem

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

• Do not assign a work-group to that Integer. How?

25

Bitmap Frontier – Another solution

WG0 WG1 WG2

SG00 SG01 SG10 SG11 SG20 SG21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Two-Layer Bitmap

26

1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0

1 1 0 1 2nd Layer

1st Layer

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

T0

0 1 3 Offsets
Buffer

• The second layer marks which Integers in the
first layer are non-zero

• Before load-balancing, each thread scans
different Integers of the second layer

• Generates a buffer of offsets that guide kernel
execution on active regions

Skip
offset 2

Experimental
Evaluation

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Experimental Evaluation — Methodology

28International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11
Da

ta
se

ts

CA

USA

hollyw

indo

journal

kron

twitter 530M

91M

69M

194M

56,9M

28,9M

2,8M

21,3M

2,1M

4,8M

7,4M

1,1M

23,9M

2M
Nodes # Edges• We compared SYgraph against:

‣ Gunrock

‣ Tigr

‣ SEP-Graph

• Experiments against state-of-the-art
were conducted on a NVIDIA V100S

• High-diameter and Scale-free graphs:

‣ From 2 to 24 Millions nodes

‣ From 2,1 to 530 Millions edges

Experimental Evaluation — Performance vs. SOTA Frameworks

29

Gunrock Tigr SEP-Graph PreprocessingSYgraph

Breadth First Search (BFS) Single Source Shortest Path (SSSP)

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Experimental Evaluation — Performance vs. SOTA Frameworks

30

Gunrock Tigr SEP-Graph PreprocessingSYgraph

Betweenness Centrality (BC) Connected Components Labelling (CC)

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Experimental Evaluation — Memory Footprint vs. SOTA Frameworks

• Memory Footprint expressed in Kilobytes (KB).

31

Gunrock Tigr SEP-GraphSYgraph

Note: Insets bar-plots show total memory usage per framework, following legend order.

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Experimental Evaluation — Comparison on Different Hardware

• Intel MAX 1100 performs well
on sparse workloads and sparse
graphs with LevelZero backend

• LevelZero backend yields
superior performance compared
to OpenCL backend.

• AMD MI100 excels on dense
workloads

• NVIDA V100S shows overall
strong performance

32International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Conclusion

International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

Conclusion

• SYgraph Summary

‣ A portable graph analytics framework

‣ Introduces a Two-Layer Bitmap frontier layout

‣ A load balancing mechanism tailored on top of
the bitmap

• Key Results

‣ Up to faster than Gunrock, over
Tigr, over SEP-Graph

‣ Low memory footprint, no need for
preprocessing

‣ Demonstrates performance portability

• Future Work

‣ Support for multi-GPU and multi-node
execution

‣ Exploring asynchronous and dynamic graph
capabilities

‣ Auto-tuning mechanism across architectures

‣ Integration to oneAPI Data Parallel Library
(oneDAL)3.5 × 7.5 ×

2.3 ×

34International Conference on Parallel Processing, ICPP’25, San Diego, September 8–11

