i

e
5

b
. =
T
i
.

I

Proceedings of 54th International Conference on Parallel

sl
s
.

University of Salerno « Department of Computer Scienc~

SYgraph

Antonio De Caro, Gennaro Cordasco,

{antdecaro, gcordasco, bcosenza}@uni:

e

https://www.adecaro.eu

Outline

* Introduction & Background
* Contributions
» SYgraph AP
» Execution Model
»Iwo-Layer Bitmap
* Experimental Evaluation

* Conclusion

{i_= > International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

Introduction &
Background

Introduction — Graph Analytics and GPUS

Many real-world applications are naturally
modeled as graphs

Social networks (e.g., friend/follow graphs)

Web and hyperlinks (e.g., crawling, ranking)
and more ...

These graphs are huge: millions of nodes,

pbillilons of edges ‘

GPUs offer thousands of cores that can
process nodes and edges Iin parallel

Introduction — Why are Graphs Challenging on GPUS"

* GPUs struggle to handle irregular workloads such as graph traversal due to:
» Skewed degree distribution

>
regular topology Thread ID Adjacency List

» Memory-boundness

0 L 0| > 1| > 2|/
1 N _ 1 | &> 0| &> 3 | /
2 TN 2 | = 0| &> 3 | /
3 | 7N _ 3 |e> 1| &> 2| e—>» 4| &—>» 5 | /
4 | “x_ 4 | > 3|/
S TN H | e 2 | e 3| /

GPU

: International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

Sackground — Graph Algorithms as Iterative Converging Processes

* Most graph algorithms are iterative;
* They progress step-by-step until a convergence condition is met.

* An example: Breadth First Search (BFS)

Insert Yes

source node into
the queue

Queue is

empty? Converged

BFS Step

Extract a node from neigﬁlé)()rs Yo

the queue visited?

| Yes | I

Has No
been visited? queue

Push it Into the

Inspect next neighbor

7 International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

Sackground — rFrontier-Based Processing

* In parallel graph algorithms, a Frontier is) S -
the set of active nodes during an iteration ’

* Example: in BFS, it holds nodes at @‘9

current distance level

* Algorithms proceed in supersteps: Step 2

1. Expand frontier

Z. Apply logic

5. Prepare next iteration
Step 3

: International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

Sackgrounda — rrontier Representation

Vector-based frontier: Vector Erontier

Each entry represents a node In the

frontier
—~

Bitmap-based frontier: Integer

Fach bit 1 represents whether the Bitmap Frontier
vertex 1 is in the frontier

0O 1 2 3 4 5

First Integer (4 bits) Second Integer (4 bits)

Sackground — Bitmap

—rontier vs. Vector

Bitmap has no duplicated nodes for

advance operations

Which means no search after the

advance operation

L ess space for scale-free graphs!

—rontier

Vector Frontier

—~

Integer

Bitmap Frontier

First Integer (4 bits) Second Integer (4 bits)

BSackground — SOTA GPU Graph Frameworks

AMD Intel NVIDIA
ROCm LeveIZerM e d u S a CUDA
Gunriock
x szP—G raph

cuGiraph
Tigr
5/10 Supercomputers In J
TOP10 has AMD or Intel

cPUs| graphBLAST
Sk

: International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

Contributions

International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

Contributions

SYgraph, the first portable, heterogeneous graph
analytics GPU framework based on SYCL and C++20

A load-balanced execution model for graph traversal

A novel memory-efficient Two-Layer Bitmap Frontier

SYgraph API

International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

SYgraph APl — Primitives

* SYgraph provides fundamental
building blocks called primitives

In-Frontier In-Frontier

QOO
G

* There are three core primitives:

O O
00000

» Compute (Vertex Operation) Advance Compute

» Advance (Edge Operation)

Out-Frontier

) Fi Iter In-Frontier

QOONO

o Each primitive uses a user-defined
lambda function that enables the ‘ ‘ ‘
data-driven behavior Out-Frontier

Filter

: International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

SYgraph APl — An Example of BFS

SYgraph APl Components:
Primitives: apply user-defined logic

Frontier: handles dynamic sets of active
elements

Graph: common graph operations

I/0: manages read/write operations of
graphs

In yellow the code executed on the GPU

—ach lambda captures the pointer to data
structures allocated by the host, such as the
dist array

uslng namespace sygraph;

void BFS (Graph& G, int* dist, vertex t src) {
auto i1n frontier = makeFrontier (G)

auto out frontier = makeFrontier (G)

in frontier.insert(src)

size t size = G.getVertexCount ()

int i1ter = 0

while (!1n frontier.empty()) {

operators: :advance: :frontier (G, in frontier, out frontier,

[=] (vertex t u, vertex t v, edge t e, weight t w) {
bool visited = dist[v] < (size + 1)
return !visited

}) .wait ()

operators: :compute: :execute (G, out frontier,

[=] (vertex t v) {
dist[v] = 1ter + 1
}) .walit ()
frontier::swap(in frontier, out frontier)
out frontiler.clear ()
lter++

b}

Execution Model

International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

xecution Modgel

* SYgraph uses a bitmap-based frontier - Work-group (WG): like CUDA Block
representation - Sub-group (SG): like CUDA Warp

Threads '—‘—"—‘—' '—‘—"—‘—' I—‘—l I_‘_l l_‘_l |_‘_|

NSNS NS NS

: International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

xecution Model — Subgroup Workload during Advance

Initially, each thread is assigned to a 0 1 2 .. 31 Threads
single bit (i.e. vertex) | | l SGxy
- : Vo Vi V V
With a sub-group scan operation, the ‘ ;) 01 12 il‘ 1 —
threads compact the active vertices | Bitmap‘" L o 0| "2 II\/I 31
. _ocal Memory
Into local memory
Cooperatively
The threads then begin processing the Process
neighborhood of each active vertexina 0 1 ... 31 0 1 .. 31
cooperative fashion i | —
- - Vo[V2| - [V31 Vo Vo | ... |V
This process ends when all the active 0l 2 2 0172 31
. . -ocal Memory _ocal Memory
vertices In the current Integer are

visited

xecution Model — Cooperative Processing

Each thread is assigned to a different
neighbor of a specific active vertex

During this step, each thread applies
the user-defined lambda to determine

if the neighbor should be added to the

output frontier

Access to the neighborhood occurs in a
coalesced fashion

Thi
ighbors have been evaluated

ne

S process concludes when all

Neighbors

Threads

0

I 1

31

Sitmap Frontier — A problem

* What happens if only one bit is set to 1 for each Integer?

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Il! 1 000fio0o0fio
T T T TTTTY

SGy S5Gy, SG SGyq SGy) SGy, SGy SGy,

NSNS NS NS

: International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

Sitmap Frontier — A solution

* Adjust the bitmap Integer size to match the subgroup size

* All threads within a sub-group will stay active during the neighlbornood processing

Sitmap Frontier — A solution

* Apply a coarsening factor to improve GPU resource usage

* Each work-group will be assigned to multiple bitmap Integers

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 ofoo0fio00jio00fio0

5Gg 5Gy 5Gry 5G3

WG, WG,

: International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

Two-Layer
Bitmap

International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

Sitmap Frontier — Another problem

* What happens when an Integer is 07

9 10 11 12 13 14 15

5Goy 3Gy, 5Gy 5Gy, 5Gy 5Gy 3Gy 5G3,
NS NS NS NS
WG, WG, WG, WG;

Wasted GPU Resources

: International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

Sitmap Frontier — Another solution

* Do not assign a work-group to that Integer. How??

9 10 11 12 13 14 15

5Ggoy 5Gy, 5Gy 5Gy; 5Gy 5Gy;
NSNS NS
WG, WG, WG,

: International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

[wo-Layer Bitmap

The second layer marks which Integers in the
first layer are non-zero

RN ER I
Before load-balancing, each thread scans Buffer

different Integers of the second layer .
‘\jq) Skip

offset 2

7" N/ N/ O\

[1i1§0§1] 2ndLayer

Generates a buffer of offsets that guide kernel
execution on active regions

1st Layer

Experimental
Evaluation

xperimental evaluation — Methodology

We compared SYgraph against: # Nodes B # Edges
2M
Gunrock CA > 8M
Hor USA 125 OM
SEP-Graph hollyw L= 1M el oM
Experiments against state-of-the-art A 7,4M
were conducted on a NVIDIA V100S G 194M
. 4,8M
. . | ’
High-diameter and Scale-free graphs: P 69M
2,1M
From 2 to 24 Millions nodes Kron 91M

. 21,3M
From 2,1 to 530 Millions edges twitter 530M

xperimental Evaluation — Performance vs. SOTA Frameworks

- SYgraph - Gunrock - Tigr - SEP-Graph Preprocessing

Breadth First Search (BFS) Single Source Shortest Path (SSSP)

—
o
||||Ioo| L1111

—
)
"

Execution Time (ms)

Execution Time (ms)

—
)

CA USA hollyw indo kron twitter CA USA hollyw indo kron twitter

7 International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

xperimental Evaluation — Performance vs. SOTA Frameworks

- SYgraph - Gunrock - Tigr - SEP-Graph Preprocessing

Betweenness Centrality (BC) Connected Components Labelling (CC)

10 3
’ IIII III

USA hollyw indo kron twitter CA USA hollyw indo kron twitter

Execution Time (ms)
Execution Time (ms)

7 International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

xperimental zvaluation — Memory

—ootprint vs, SOTA

rameworks

* Memory Footprint expressed in Kilobytes (KB).

SYgraph

m— mmm mm= (GUNrOCK

HEEEEE . T|gr

SEP-Graph

dataset = CA

104-; ;lu .. %..5:.:5 ...
1 ! q i
103 3 : PP C I TPt P Lo
25 5 14.09
107 | GB
1
10 9
1 0.28 0.35 1.07
0 GB GB GB
10 a Frameworks
0 80 160 240 320 400 480 560 640
lteration

dataset = hollyw

Frameworks

3 / 5 6 7 8 9

lteration

dataset = indo

Frameworks

0 5 10 15 20 25 30 35 40
lteration

Note: Insets bar-plots show total memory usage per framework, following legend order.

International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

xperimental Evaluation — Comparison on Different Hardware
m MAX 1100 LevelZero MAX 1100 OpenCL s MI100 ROCm B V100S CUDA
* Intel MAX 1100 performs well | gorithin = BC lgorithm = BFS
on sparse workloads and sparse .
. 210" 4
graphs with LevelZero backend e
» LevelZero backend vields 21"
superior performance compared g
tO OpeﬂCL baCkend | CA USA hollyw indo journal kron CA USA hollyw indo journal kron
° AMD MI1OO eXCG‘S On dense algorithm = CC algorithm = SSSP
workloads 210°
£
* NVIDA V100S shows overall 510
strong performance g
10’
CA USA hollyw indo journal kron - CA USA hollyw indo journal kron

7 International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

Conclusion

International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

Conclusion

* SYgraph Summary * Future Work
» A portable graph analytics framework » Support for multi-GPU and multi-node
execution

» Introduces a Two-Layer Bitmap frontier layout

» EXxploring asynchronous and dynamic graph
» Aload balancing mechanism tailored on top of capabilities

the bitmap

» Auto-tuning mechanism across architectures
* Key Results

» Integration to oneAPI Data Parallel Library
» Up to 3.5 X faster than Gunrock, 7.5 X over (oneDAL)

Tigr, 2.3 X over SEP-Graph

» Low memory footprint, no need for
preprocessing

» Demonstrates performance portability

7 International Conference on Parallel Processing, ICPP’25, San Diego, September 8-11

